Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr3dZ..
/
c1b5e..
PUN7W..
/
7a9e7..
vout
Pr3dZ..
/
7079a..
0.10 bars
TMRhV..
/
faf33..
ownership of
23e87..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML8D..
/
6c0b1..
ownership of
7cfc5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZmS..
/
8db6d..
ownership of
e2d21..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRZd..
/
953cc..
ownership of
4a098..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMU6v..
/
1b87c..
ownership of
472c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLTy..
/
27ced..
ownership of
27e10..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKtg..
/
93d60..
ownership of
7f324..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMd8s..
/
6be35..
ownership of
aea32..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TManj..
/
84d38..
ownership of
8bdba..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVko..
/
f5464..
ownership of
cab4a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaAP..
/
1999d..
ownership of
c1ef5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdHx..
/
0f822..
ownership of
6064b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdnP..
/
33cdc..
ownership of
99388..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFjz..
/
0fc96..
ownership of
a4594..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX1G..
/
48fad..
ownership of
c084c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXED..
/
e1857..
ownership of
39b94..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKK9..
/
c1567..
ownership of
87e1d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPHn..
/
9e985..
ownership of
1aff8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXjx..
/
62e33..
ownership of
3ac71..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFxR..
/
34dd4..
ownership of
48dd3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPFF..
/
561f4..
ownership of
2ca2f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZDw..
/
8b324..
ownership of
1674b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWP7..
/
4dfd0..
ownership of
17f2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPKq..
/
3fc92..
ownership of
91ac1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMURp..
/
0c00a..
ownership of
8f85c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQB6..
/
0af1d..
ownership of
df466..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF6w..
/
93d9c..
ownership of
ea242..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPou..
/
274c3..
ownership of
d9526..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMabT..
/
1155a..
ownership of
65c8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMacr..
/
c022b..
ownership of
f5ebc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJ3u..
/
adc44..
ownership of
43749..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGM6..
/
2b07a..
ownership of
5c00b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRTn..
/
45e87..
ownership of
3f4e8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdaw..
/
4edeb..
ownership of
ec6b5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKYZ..
/
d7fe8..
ownership of
13f7d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWFK..
/
4ceab..
ownership of
c07c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUMry..
/
1a0fc..
doc published by
PrCmT..
Known
df_mndo__df_ghomOLD__df_rngo__df_drngo__df_rngohom__df_rngoiso__df_risc__df_com2__df_fld__df_crngo__df_idl__df_pridl__df_maxidl__df_prrngo__df_dmn__df_igen__df_xrn__df_coss
:
∀ x0 : ο .
(
wceq
cmndo
(
cin
csem
cexid
)
⟶
wceq
cghomOLD
(
cmpt2
(
λ x1 x2 .
cgr
)
(
λ x1 x2 .
cgr
)
(
λ x1 x2 .
cab
(
λ x3 .
wa
(
wf
(
crn
(
cv
x1
)
)
(
crn
(
cv
x2
)
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x3
)
)
)
(
λ x5 .
crn
(
cv
x1
)
)
)
(
λ x4 .
crn
(
cv
x1
)
)
)
)
)
)
⟶
wceq
crngo
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cablo
)
(
wf
(
cxp
(
crn
(
cv
x1
)
)
(
crn
(
cv
x1
)
)
)
(
crn
(
cv
x1
)
)
(
cv
x2
)
)
)
(
wa
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
w3a
(
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x1
)
)
(
cv
x2
)
)
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x1
)
)
)
(
wceq
(
co
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x5
)
(
cv
x2
)
)
(
co
(
co
(
cv
x3
)
(
cv
x5
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x1
)
)
)
)
(
λ x5 .
crn
(
cv
x1
)
)
)
(
λ x4 .
crn
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
(
wrex
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cv
x4
)
)
(
wceq
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
(
cv
x4
)
)
)
(
λ x4 .
crn
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
)
)
)
⟶
wceq
cdrng
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cop
(
cv
x1
)
(
cv
x2
)
)
crngo
)
(
wcel
(
cres
(
cv
x2
)
(
cxp
(
cdif
(
crn
(
cv
x1
)
)
(
csn
(
cfv
(
cv
x1
)
cgi
)
)
)
(
cdif
(
crn
(
cv
x1
)
)
(
csn
(
cfv
(
cv
x1
)
cgi
)
)
)
)
)
cgr
)
)
)
⟶
wceq
crnghom
(
cmpt2
(
λ x1 x2 .
crngo
)
(
λ x1 x2 .
crngo
)
(
λ x1 x2 .
crab
(
λ x3 .
wa
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x1
)
c2nd
)
cgi
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
c2nd
)
cgi
)
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wa
(
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
c1st
)
)
)
(
wceq
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cv
x3
)
)
(
co
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x2
)
c2nd
)
)
)
)
(
λ x5 .
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
(
λ x4 .
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
)
(
λ x3 .
co
(
crn
(
cfv
(
cv
x2
)
c1st
)
)
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
cmap
)
)
)
⟶
wceq
crngiso
(
cmpt2
(
λ x1 x2 .
crngo
)
(
λ x1 x2 .
crngo
)
(
λ x1 x2 .
crab
(
λ x3 .
wf1o
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
(
crn
(
cfv
(
cv
x2
)
c1st
)
)
(
cv
x3
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
crnghom
)
)
)
⟶
wceq
crisc
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
crngo
)
(
wcel
(
cv
x2
)
crngo
)
)
(
wex
(
λ x3 .
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
crngiso
)
)
)
)
)
⟶
wceq
ccm2
(
copab
(
λ x1 x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
co
(
cv
x4
)
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x4 .
crn
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cv
x1
)
)
)
)
⟶
wceq
cfld
(
cin
cdrng
ccm2
)
⟶
wceq
ccring
(
cin
crngo
ccm2
)
⟶
wceq
cidl
(
cmpt
(
λ x1 .
crngo
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wcel
(
cfv
(
cfv
(
cv
x1
)
c1st
)
cgi
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wa
(
wral
(
λ x4 .
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
c1st
)
)
(
cv
x2
)
)
(
λ x4 .
cv
x2
)
)
(
wral
(
λ x4 .
wa
(
wcel
(
co
(
cv
x4
)
(
cv
x3
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cv
x2
)
)
(
wcel
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cv
x2
)
)
)
(
λ x4 .
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
)
(
λ x3 .
cv
x2
)
)
)
(
λ x2 .
cpw
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
)
)
⟶
wceq
cpridl
(
cmpt
(
λ x1 .
crngo
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wcel
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x1
)
c2nd
)
)
(
cv
x2
)
)
(
λ x6 .
cv
x4
)
)
(
λ x5 .
cv
x3
)
⟶
wo
(
wss
(
cv
x3
)
(
cv
x2
)
)
(
wss
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
cfv
(
cv
x1
)
cidl
)
)
(
λ x3 .
cfv
(
cv
x1
)
cidl
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cidl
)
)
)
⟶
wceq
cmaxidl
(
cmpt
(
λ x1 .
crngo
)
(
λ x1 .
crab
(
λ x2 .
wa
(
wne
(
cv
x2
)
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
(
wral
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
⟶
wo
(
wceq
(
cv
x3
)
(
cv
x2
)
)
(
wceq
(
cv
x3
)
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
)
(
λ x3 .
cfv
(
cv
x1
)
cidl
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cidl
)
)
)
⟶
wceq
cprrng
(
crab
(
λ x1 .
wcel
(
csn
(
cfv
(
cfv
(
cv
x1
)
c1st
)
cgi
)
)
(
cfv
(
cv
x1
)
cpridl
)
)
(
λ x1 .
crngo
)
)
⟶
wceq
cdmn
(
cin
cprrng
ccm2
)
⟶
wceq
cigen
(
cmpt2
(
λ x1 x2 .
crngo
)
(
λ x1 x2 .
cpw
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
)
(
λ x1 x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
cidl
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cxrn
x1
x2
)
(
cin
(
ccom
(
ccnv
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
x1
)
(
ccom
(
ccnv
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
x2
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
ccoss
x1
)
(
copab
(
λ x2 x3 .
wex
(
λ x4 .
wa
(
wbr
(
cv
x4
)
(
cv
x2
)
x1
)
(
wbr
(
cv
x4
)
(
cv
x3
)
x1
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_mndo
:
wceq
cmndo
(
cin
csem
cexid
)
(proof)
Theorem
df_ghomOLD
:
wceq
cghomOLD
(
cmpt2
(
λ x0 x1 .
cgr
)
(
λ x0 x1 .
cgr
)
(
λ x0 x1 .
cab
(
λ x2 .
wa
(
wf
(
crn
(
cv
x0
)
)
(
crn
(
cv
x1
)
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wceq
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x1
)
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x2
)
)
)
(
λ x4 .
crn
(
cv
x0
)
)
)
(
λ x3 .
crn
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_rngo
:
wceq
crngo
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cablo
)
(
wf
(
cxp
(
crn
(
cv
x0
)
)
(
crn
(
cv
x0
)
)
)
(
crn
(
cv
x0
)
)
(
cv
x1
)
)
)
(
wa
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
w3a
(
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x1
)
)
)
(
wceq
(
co
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x0
)
)
(
cv
x1
)
)
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
cv
x2
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x0
)
)
)
(
wceq
(
co
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
(
cv
x4
)
(
cv
x1
)
)
(
co
(
co
(
cv
x2
)
(
cv
x4
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
(
cv
x0
)
)
)
)
(
λ x4 .
crn
(
cv
x0
)
)
)
(
λ x3 .
crn
(
cv
x0
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
(
wrex
(
λ x2 .
wral
(
λ x3 .
wa
(
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
cv
x3
)
)
(
wceq
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
(
cv
x3
)
)
)
(
λ x3 .
crn
(
cv
x0
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_drngo
:
wceq
cdrng
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cop
(
cv
x0
)
(
cv
x1
)
)
crngo
)
(
wcel
(
cres
(
cv
x1
)
(
cxp
(
cdif
(
crn
(
cv
x0
)
)
(
csn
(
cfv
(
cv
x0
)
cgi
)
)
)
(
cdif
(
crn
(
cv
x0
)
)
(
csn
(
cfv
(
cv
x0
)
cgi
)
)
)
)
)
cgr
)
)
)
(proof)
Theorem
df_rngohom
:
wceq
crnghom
(
cmpt2
(
λ x0 x1 .
crngo
)
(
λ x0 x1 .
crngo
)
(
λ x0 x1 .
crab
(
λ x2 .
wa
(
wceq
(
cfv
(
cfv
(
cfv
(
cv
x0
)
c2nd
)
cgi
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
c2nd
)
cgi
)
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wa
(
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
c1st
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
c1st
)
)
)
(
wceq
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cv
x2
)
)
(
co
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
c2nd
)
)
)
)
(
λ x4 .
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
(
λ x3 .
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
)
(
λ x2 .
co
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
cmap
)
)
)
(proof)
Theorem
df_rngoiso
:
wceq
crngiso
(
cmpt2
(
λ x0 x1 .
crngo
)
(
λ x0 x1 .
crngo
)
(
λ x0 x1 .
crab
(
λ x2 .
wf1o
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
(
crn
(
cfv
(
cv
x1
)
c1st
)
)
(
cv
x2
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
crnghom
)
)
)
(proof)
Theorem
df_risc
:
wceq
crisc
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
crngo
)
(
wcel
(
cv
x1
)
crngo
)
)
(
wex
(
λ x2 .
wcel
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
crngiso
)
)
)
)
)
(proof)
Theorem
df_com2
:
wceq
ccm2
(
copab
(
λ x0 x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x1
)
)
(
co
(
cv
x3
)
(
cv
x2
)
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cv
x0
)
)
)
(
λ x2 .
crn
(
cv
x0
)
)
)
)
(proof)
Theorem
df_fld
:
wceq
cfld
(
cin
cdrng
ccm2
)
(proof)
Theorem
df_crngo
:
wceq
ccring
(
cin
crngo
ccm2
)
(proof)
Theorem
df_idl
:
wceq
cidl
(
cmpt
(
λ x0 .
crngo
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cfv
(
cv
x0
)
c1st
)
cgi
)
(
cv
x1
)
)
(
wral
(
λ x2 .
wa
(
wral
(
λ x3 .
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
c1st
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
wral
(
λ x3 .
wa
(
wcel
(
co
(
cv
x3
)
(
cv
x2
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cv
x1
)
)
(
wcel
(
co
(
cv
x2
)
(
cv
x3
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cv
x1
)
)
)
(
λ x3 .
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
)
(
λ x2 .
cv
x1
)
)
)
(
λ x1 .
cpw
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
)
)
(proof)
Theorem
df_pridl
:
wceq
cpridl
(
cmpt
(
λ x0 .
crngo
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wcel
(
co
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x0
)
c2nd
)
)
(
cv
x1
)
)
(
λ x5 .
cv
x3
)
)
(
λ x4 .
cv
x2
)
⟶
wo
(
wss
(
cv
x2
)
(
cv
x1
)
)
(
wss
(
cv
x3
)
(
cv
x1
)
)
)
(
λ x3 .
cfv
(
cv
x0
)
cidl
)
)
(
λ x2 .
cfv
(
cv
x0
)
cidl
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cidl
)
)
)
(proof)
Theorem
df_maxidl
:
wceq
cmaxidl
(
cmpt
(
λ x0 .
crngo
)
(
λ x0 .
crab
(
λ x1 .
wa
(
wne
(
cv
x1
)
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
(
wral
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
⟶
wo
(
wceq
(
cv
x2
)
(
cv
x1
)
)
(
wceq
(
cv
x2
)
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
)
(
λ x2 .
cfv
(
cv
x0
)
cidl
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cidl
)
)
)
(proof)
Theorem
df_prrngo
:
wceq
cprrng
(
crab
(
λ x0 .
wcel
(
csn
(
cfv
(
cfv
(
cv
x0
)
c1st
)
cgi
)
)
(
cfv
(
cv
x0
)
cpridl
)
)
(
λ x0 .
crngo
)
)
(proof)
Theorem
df_dmn
:
wceq
cdmn
(
cin
cprrng
ccm2
)
(proof)
Theorem
df_igen
:
wceq
cigen
(
cmpt2
(
λ x0 x1 .
crngo
)
(
λ x0 x1 .
cpw
(
crn
(
cfv
(
cv
x0
)
c1st
)
)
)
(
λ x0 x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
cidl
)
)
)
)
(proof)
Theorem
df_xrn
:
∀ x0 x1 :
ι → ο
.
wceq
(
cxrn
x0
x1
)
(
cin
(
ccom
(
ccnv
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
x0
)
(
ccom
(
ccnv
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
x1
)
)
(proof)
Theorem
df_coss
:
∀ x0 :
ι → ο
.
wceq
(
ccoss
x0
)
(
copab
(
λ x1 x2 .
wex
(
λ x3 .
wa
(
wbr
(
cv
x3
)
(
cv
x1
)
x0
)
(
wbr
(
cv
x3
)
(
cv
x2
)
x0
)
)
)
)
(proof)