Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrMcS../d6683..
PUeAj../ca5dc..
vout
PrMcS../4fe1c.. 19.98 bars
TMJ3A../04685.. ownership of 61fbf.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMKNG../69093.. ownership of 35371.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMT3b../e7e95.. ownership of 84048.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTMa../d4e8b.. ownership of cf9d3.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdJy../1e1fd.. ownership of 272ea.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRmk../39065.. ownership of b861a.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYNa../1acad.. ownership of 58cb3.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMFy6../45e11.. ownership of 8b905.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUxY../b4ccc.. ownership of 67b52.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMXGb../86075.. ownership of 6cbaa.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUpU../32806.. ownership of bf993.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMGkB../2c32e.. ownership of 18887.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMTPx../fa54b.. ownership of 31431.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdmP../8d841.. ownership of 766cf.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMWxJ../8328f.. ownership of 19ff6.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMRrF../303c5.. ownership of 451aa.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMPXs../f42ce.. ownership of e9411.. as prop with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMYMj../2b449.. ownership of f451e.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMdYg../c10e8.. ownership of 7cbcc.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMW7q../da631.. ownership of a0dc2.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMa5d../39785.. ownership of 11a63.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMZHN../c6f07.. ownership of a492e.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMUhj../93cff.. ownership of 02ada.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
TMS4y../3a199.. ownership of c3e2e.. as obj with payaddr Pr6Pc.. rights free controlledby Pr6Pc.. upto 0
PUX9e../09ed4.. doc published by Pr6Pc..
Definition c3e2e.. := λ x0 x1 . λ x2 : ι → ι . λ x3 . λ x4 : ι → ι → ι . λ x5 x6 . ∀ x7 : ι → ι → ο . x7 x1 x3(∀ x8 . x8x0∀ x9 . x7 x8 x9x7 (x2 x8) (x4 x8 x9))x7 x5 x6
Param explicit_Natsexplicit_Nats : ιι(ιι) → ο
Known explicit_Nats_indexplicit_Nats_ind : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 : ι → ο . x3 x1(∀ x4 . x4x0x3 x4x3 (x2 x4))∀ x4 . x4x0x3 x4
Theorem e9411.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . x5x0∀ x6 : ο . (∀ x7 . c3e2e.. x0 x1 x2 x3 x4 x5 x7x6)x6 (proof)
Known explicit_Nats_Eexplicit_Nats_E : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 : ο . (explicit_Nats x0 x1 x2x1x0(∀ x4 . x4x0x2 x4x0)(∀ x4 . x4x0x2 x4 = x1∀ x5 : ο . x5)(∀ x4 . x4x0∀ x5 . x5x0x2 x4 = x2 x5x4 = x5)(∀ x4 : ι → ο . x4 x1(∀ x5 . x4 x5x4 (x2 x5))∀ x5 . x5x0x4 x5)x3)explicit_Nats x0 x1 x2x3
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 451aa.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . c3e2e.. x0 x1 x2 x3 x4 x1 x5x5 = x3 (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 19ff6.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . x5x0∀ x6 . c3e2e.. x0 x1 x2 x3 x4 (x2 x5) x6∀ x7 : ο . (∀ x8 . and (x6 = x4 x5 x8) (c3e2e.. x0 x1 x2 x3 x4 x5 x8)x7)x7 (proof)
Theorem 766cf.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . x5x0∀ x6 x7 . c3e2e.. x0 x1 x2 x3 x4 x5 x6c3e2e.. x0 x1 x2 x3 x4 x5 x7x6 = x7 (proof)
Definition explicit_Nats_primrecexplicit_Nats_primrec := λ x0 x1 . λ x2 : ι → ι . λ x3 . λ x4 : ι → ι → ι . λ x5 . prim0 (c3e2e.. x0 x1 x2 x3 x4 x5)
Known Eps_i_exEps_i_ex : ∀ x0 : ι → ο . (∀ x1 : ο . (∀ x2 . x0 x2x1)x1)x0 (prim0 x0)
Theorem 31431.. : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . x5x0c3e2e.. x0 x1 x2 x3 x4 x5 (explicit_Nats_primrec x0 x1 x2 x3 x4 x5) (proof)
Theorem explicit_Nats_primrec_baseexplicit_Nats_primrec_base : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2explicit_Nats_primrec x0 x1 x2 x3 x4 x1 = x3 (proof)
Theorem explicit_Nats_primrec_Sexplicit_Nats_primrec_S : ∀ x0 x1 . ∀ x2 : ι → ι . ∀ x3 . ∀ x4 : ι → ι → ι . explicit_Nats x0 x1 x2∀ x5 . x5x0explicit_Nats_primrec x0 x1 x2 x3 x4 (x2 x5) = x4 x5 (explicit_Nats_primrec x0 x1 x2 x3 x4 x5) (proof)
Definition explicit_Nats_zero_plusexplicit_Nats_zero_plus := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . explicit_Nats_primrec x0 x1 x2 x4 (λ x5 . x2) x3
Definition explicit_Nats_zero_multexplicit_Nats_zero_mult := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . explicit_Nats_primrec x0 x1 x2 x1 (λ x5 . explicit_Nats_zero_plus x0 x1 x2 x4) x3
Theorem explicit_Nats_zero_plus_0Lexplicit_Nats_zero_plus_0L : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0explicit_Nats_zero_plus x0 x1 x2 x1 x3 = x3 (proof)
Theorem explicit_Nats_zero_plus_SLexplicit_Nats_zero_plus_SL : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0∀ x4 . x4x0explicit_Nats_zero_plus x0 x1 x2 (x2 x3) x4 = x2 (explicit_Nats_zero_plus x0 x1 x2 x3 x4) (proof)
Theorem explicit_Nats_zero_mult_0Lexplicit_Nats_zero_mult_0L : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0explicit_Nats_zero_mult x0 x1 x2 x1 x3 = x1 (proof)
Theorem explicit_Nats_zero_mult_SLexplicit_Nats_zero_mult_SL : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0∀ x4 . x4x0explicit_Nats_zero_mult x0 x1 x2 (x2 x3) x4 = explicit_Nats_zero_plus x0 x1 x2 x4 (explicit_Nats_zero_mult x0 x1 x2 x3 x4) (proof)
Definition explicit_Nats_one_plusexplicit_Nats_one_plus := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . explicit_Nats_primrec x0 x1 x2 (x2 x4) (λ x5 . x2) x3
Definition explicit_Nats_one_multexplicit_Nats_one_mult := λ x0 x1 . λ x2 : ι → ι . λ x3 x4 . explicit_Nats_primrec x0 x1 x2 x4 (λ x5 . explicit_Nats_one_plus x0 x1 x2 x4) x3
Definition explicit_Nats_one_expexplicit_Nats_one_exp := λ x0 x1 . λ x2 : ι → ι . λ x3 . explicit_Nats_primrec x0 x1 x2 x3 (λ x4 . explicit_Nats_one_mult x0 x1 x2 x3)
Theorem explicit_Nats_one_plus_1Lexplicit_Nats_one_plus_1L : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0explicit_Nats_one_plus x0 x1 x2 x1 x3 = x2 x3 (proof)
Theorem explicit_Nats_one_plus_SLexplicit_Nats_one_plus_SL : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0∀ x4 . x4x0explicit_Nats_one_plus x0 x1 x2 (x2 x3) x4 = x2 (explicit_Nats_one_plus x0 x1 x2 x3 x4) (proof)
Theorem explicit_Nats_one_mult_1Lexplicit_Nats_one_mult_1L : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0explicit_Nats_one_mult x0 x1 x2 x1 x3 = x3 (proof)
Theorem explicit_Nats_one_mult_SLexplicit_Nats_one_mult_SL : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0∀ x4 . x4x0explicit_Nats_one_mult x0 x1 x2 (x2 x3) x4 = explicit_Nats_one_plus x0 x1 x2 x4 (explicit_Nats_one_mult x0 x1 x2 x3 x4) (proof)
Theorem explicit_Nats_one_exp_1Lexplicit_Nats_one_exp_1L : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0explicit_Nats_one_exp x0 x1 x2 x3 x1 = x3 (proof)
Theorem explicit_Nats_one_exp_SLexplicit_Nats_one_exp_SL : ∀ x0 x1 . ∀ x2 : ι → ι . explicit_Nats x0 x1 x2∀ x3 . x3x0∀ x4 . x4x0explicit_Nats_one_exp x0 x1 x2 x3 (x2 x4) = explicit_Nats_one_mult x0 x1 x2 x3 (explicit_Nats_one_exp x0 x1 x2 x3 x4) (proof)