Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrJTf../0c539..
PUdqk../0bdc3..
vout
PrJTf../98578.. 23.99 bars
PUUUG../8a941.. doc published by PrGxv..
Param intint : ι
Param mul_SNomul_SNo : ιιι
Param ordsuccordsucc : ιι
Param If_iIf_i : οιιι
Param SNoLeSNoLe : ιιο
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Conjecture 90e2e..A13719 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 . x1int∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 . x4int∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι → ι . (∀ x19 . x19int∀ x20 . x20int∀ x21 . x21intx18 x19 x20 x21int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25intx0 x25 = mul_SNo x25 x25)x1 = 2x2 = 2(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26)))x4 = x3 x1 x2(∀ x25 . x25intx5 x25 = mul_SNo (add_SNo x4 (minus_SNo 2)) x25)(∀ x25 . x25intx6 x25 = add_SNo 1 (add_SNo x25 x25))x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = mul_SNo (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo (add_SNo x25 x25) x25)) x25)) x25)x12 = 1(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = x26)(∀ x25 . x25intx15 x25 = x25)x16 = 1x17 = add_SNo 2 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx18 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x13 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx19 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x14 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx20 x25 = x18 (x15 x25) x16 x17)(∀ x25 . x25intx21 x25 = x20 x25)(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 x12 (x21 x25))(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 52211..A13718 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι → ι . (∀ x19 . x19int∀ x20 . x20int∀ x21 . x21intx18 x19 x20 x21int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo (add_SNo 2 x26) x25)x1 = 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = add_SNo (x4 x25) x25)(∀ x25 . x25intx6 x25 = add_SNo 1 (add_SNo x25 x25))x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = mul_SNo (add_SNo (mul_SNo 2 (mul_SNo 2 (add_SNo (add_SNo x25 x25) x25))) x25) x25)x12 = 1(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = x26)(∀ x25 . x25intx15 x25 = x25)x16 = 1x17 = add_SNo 1 (mul_SNo 2 (add_SNo 2 (add_SNo 2 2)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx18 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x13 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx19 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x14 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx20 x25 = x18 (x15 x25) x16 x17)(∀ x25 . x25intx21 x25 = x20 x25)(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 x12 (x21 x25))(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture fed16..A13717 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι → ι . (∀ x19 . x19int∀ x20 . x20int∀ x21 . x21intx18 x19 x20 x21int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo (add_SNo 2 x26) x25)x1 = 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = x4 x25)(∀ x25 . x25intx6 x25 = add_SNo 1 (add_SNo x25 x25))x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = mul_SNo (add_SNo (add_SNo x25 x25) x25) x25)x12 = 1(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = x26)(∀ x25 . x25intx15 x25 = x25)x16 = 2x17 = mul_SNo 2 (add_SNo 2 (add_SNo 2 2))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx18 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x13 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx19 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x14 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx20 x25 = x18 (x15 x25) x16 x17)(∀ x25 . x25intx21 x25 = x20 x25)(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 x12 (x21 x25))(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture 0b361..A13716 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 . x1int∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι → ι → ι . (∀ x19 . x19int∀ x20 . x20int∀ x21 . x21intx18 x19 x20 x21int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι → ι . (∀ x23 . x23int∀ x24 . x24intx22 x23 x24int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)(∀ x25 . x25int∀ x26 . x26intx0 x25 x26 = mul_SNo (add_SNo 2 x26) x25)x1 = 2(∀ x25 . x25intx2 x25 = x25)(∀ x25 . x25int∀ x26 . x26intx3 x25 x26 = If_i (SNoLe x25 0) x26 (x0 (x3 (add_SNo x25 (minus_SNo 1)) x26) x25))(∀ x25 . x25intx4 x25 = x3 x1 (x2 x25))(∀ x25 . x25intx5 x25 = add_SNo (x4 x25) (minus_SNo x25))(∀ x25 . x25intx6 x25 = add_SNo 1 (add_SNo x25 x25))x7 = 1(∀ x25 . x25int∀ x26 . x26intx8 x25 x26 = If_i (SNoLe x25 0) x26 (x5 (x8 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx9 x25 = x8 (x6 x25) x7)(∀ x25 . x25intx10 x25 = x9 x25)(∀ x25 . x25intx11 x25 = mul_SNo (add_SNo (mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x25 x25)) x25)) x25) x25)x12 = 1(∀ x25 . x25int∀ x26 . x26intx13 x25 x26 = mul_SNo x25 x26)(∀ x25 . x25int∀ x26 . x26intx14 x25 x26 = x26)(∀ x25 . x25intx15 x25 = x25)x16 = 1x17 = add_SNo 1 (add_SNo 2 (mul_SNo 2 (add_SNo 2 2)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx18 x25 x26 x27 = If_i (SNoLe x25 0) x26 (x13 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx19 x25 x26 x27 = If_i (SNoLe x25 0) x27 (x14 (x18 (add_SNo x25 (minus_SNo 1)) x26 x27) (x19 (add_SNo x25 (minus_SNo 1)) x26 x27)))(∀ x25 . x25intx20 x25 = x18 (x15 x25) x16 x17)(∀ x25 . x25intx21 x25 = x20 x25)(∀ x25 . x25int∀ x26 . x26intx22 x25 x26 = If_i (SNoLe x25 0) x26 (x11 (x22 (add_SNo x25 (minus_SNo 1)) x26)))(∀ x25 . x25intx23 x25 = x22 x12 (x21 x25))(∀ x25 . x25intx24 x25 = x23 x25)∀ x25 . x25intSNoLe 0 x25x10 x25 = x24 x25
Conjecture e9cf2..A13715 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x20 x20)) x20))(∀ x20 . x20intx1 x20 = add_SNo 1 (add_SNo x20 x20))x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo (add_SNo (mul_SNo 2 (add_SNo x20 x20)) x20) (add_SNo x20 x20))x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 2 (mul_SNo 2 (add_SNo 2 2))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture b3459..A13714 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (add_SNo x20 x20) x20)(∀ x20 . x20intx1 x20 = add_SNo 2 (mul_SNo 2 (add_SNo x20 x20)))x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo x20 x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = add_SNo 1 2x12 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 1c96e..A13713 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22intx0 x22 = add_SNo x22 x22)(∀ x22 . x22intx1 x22 = add_SNo 2 (mul_SNo 2 (add_SNo (add_SNo x22 x22) x22)))x2 = 2(∀ x22 . x22int∀ x23 . x23intx3 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x3 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx4 x22 = x3 (x1 x22) x2)(∀ x22 . x22intx5 x22 = x4 x22)(∀ x22 . x22intx6 x22 = mul_SNo (mul_SNo x22 x22) x22)x7 = 1(∀ x22 . x22intx8 x22 = mul_SNo x22 x22)x9 = 1(∀ x22 . x22intx10 x22 = add_SNo x22 x22)(∀ x22 . x22intx11 x22 = x22)x12 = 1(∀ x22 . x22int∀ x23 . x23intx13 x22 x23 = If_i (SNoLe x22 0) x23 (x10 (x13 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx14 x22 = x13 (x11 x22) x12)(∀ x22 . x22intx15 x22 = x14 x22)(∀ x22 . x22int∀ x23 . x23intx16 x22 x23 = If_i (SNoLe x22 0) x23 (x8 (x16 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx17 x22 = x16 x9 (x15 x22))(∀ x22 . x22intx18 x22 = mul_SNo 2 (x17 x22))(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x6 (x19 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx20 x22 = x19 x7 (x18 x22))(∀ x22 . x22intx21 x22 = x20 x22)∀ x22 . x22intSNoLe 0 x22x5 x22 = x21 x22
Conjecture 7baf5..A13712 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (mul_SNo 2 (add_SNo (add_SNo x20 x20) x20)) x20)(∀ x20 . x20intx1 x20 = add_SNo 1 (add_SNo x20 x20))x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo (add_SNo (mul_SNo 2 (add_SNo (add_SNo x20 x20) x20)) x20) x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 1 (add_SNo 2 (add_SNo 2 2))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 03021..A13711 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = mul_SNo 2 (add_SNo (add_SNo x20 x20) x20))(∀ x20 . x20intx1 x20 = add_SNo 1 (add_SNo x20 x20))x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo (add_SNo (add_SNo x20 x20) x20) (add_SNo x20 x20))x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 2 (add_SNo 2 2)(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 34fc2..A13710 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 . x11int∀ x12 . x12int∀ x13 : ι → ι → ι → ι . (∀ x14 . x14int∀ x15 . x15int∀ x16 . x16intx13 x14 x15 x16int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)(∀ x20 . x20intx0 x20 = add_SNo (mul_SNo 2 (add_SNo x20 x20)) x20)(∀ x20 . x20intx1 x20 = add_SNo 1 (add_SNo x20 x20))x2 = 1(∀ x20 . x20int∀ x21 . x21intx3 x20 x21 = If_i (SNoLe x20 0) x21 (x0 (x3 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx4 x20 = x3 (x1 x20) x2)(∀ x20 . x20intx5 x20 = x4 x20)(∀ x20 . x20intx6 x20 = mul_SNo (add_SNo (mul_SNo 2 (add_SNo x20 x20)) x20) x20)x7 = 1(∀ x20 . x20int∀ x21 . x21intx8 x20 x21 = mul_SNo x20 x21)(∀ x20 . x20int∀ x21 . x21intx9 x20 x21 = x21)(∀ x20 . x20intx10 x20 = x20)x11 = 1x12 = add_SNo 1 (add_SNo 2 2)(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx13 x20 x21 x22 = If_i (SNoLe x20 0) x21 (x8 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx14 x20 x21 x22 = If_i (SNoLe x20 0) x22 (x9 (x13 (add_SNo x20 (minus_SNo 1)) x21 x22) (x14 (add_SNo x20 (minus_SNo 1)) x21 x22)))(∀ x20 . x20intx15 x20 = x13 (x10 x20) x11 x12)(∀ x20 . x20intx16 x20 = x15 x20)(∀ x20 . x20int∀ x21 . x21intx17 x20 x21 = If_i (SNoLe x20 0) x21 (x6 (x17 (add_SNo x20 (minus_SNo 1)) x21)))(∀ x20 . x20intx18 x20 = x17 x7 (x16 x20))(∀ x20 . x20intx19 x20 = x18 x20)∀ x20 . x20intSNoLe 0 x20x5 x20 = x19 x20
Conjecture 75e18..A13709 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 . x7int∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 . x10int∀ x11 : ι → ι → ι . (∀ x12 . x12int∀ x13 . x13intx11 x12 x13int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)(∀ x17 . x17intx0 x17 = add_SNo x17 x17)(∀ x17 . x17intx1 x17 = mul_SNo 2 (add_SNo x17 x17))x2 = 2(∀ x17 . x17int∀ x18 . x18intx3 x17 x18 = If_i (SNoLe x17 0) x18 (x0 (x3 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx4 x17 = x3 (x1 x17) x2)(∀ x17 . x17intx5 x17 = mul_SNo 2 (x4 x17))(∀ x17 . x17intx6 x17 = mul_SNo x17 x17)x7 = 2(∀ x17 . x17intx8 x17 = add_SNo x17 x17)(∀ x17 . x17intx9 x17 = x17)x10 = 1(∀ x17 . x17int∀ x18 . x18intx11 x17 x18 = If_i (SNoLe x17 0) x18 (x8 (x11 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx12 x17 = x11 (x9 x17) x10)(∀ x17 . x17intx13 x17 = x12 x17)(∀ x17 . x17int∀ x18 . x18intx14 x17 x18 = If_i (SNoLe x17 0) x18 (x6 (x14 (add_SNo x17 (minus_SNo 1)) x18)))(∀ x17 . x17intx15 x17 = x14 x7 (x13 x17))(∀ x17 . x17intx16 x17 = mul_SNo 2 (mul_SNo 2 (x15 x17)))∀ x17 . x17intSNoLe 0 x17x5 x17 = x16 x17
Conjecture d78e0..A13708 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 . x9int∀ x10 . x10int∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)(∀ x15 . x15intx0 x15 = add_SNo (add_SNo x15 x15) x15)(∀ x15 . x15intx1 x15 = add_SNo 1 (add_SNo x15 x15))x2 = 1(∀ x15 . x15int∀ x16 . x16intx3 x15 x16 = If_i (SNoLe x15 0) x16 (x0 (x3 (add_SNo x15 (minus_SNo 1)) x16)))(∀ x15 . x15intx4 x15 = x3 (x1 x15) x2)(∀ x15 . x15intx5 x15 = x4 x15)(∀ x15 . x15int∀ x16 . x16intx6 x15 x16 = mul_SNo x15 x16)(∀ x15 . x15int∀ x16 . x16intx7 x15 x16 = x16)(∀ x15 . x15intx8 x15 = x15)x9 = add_SNo 1 2x10 = add_SNo 1 (mul_SNo 2 (add_SNo 2 2))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx11 x15 x16 x17 = If_i (SNoLe x15 0) x16 (x6 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx12 x15 x16 x17 = If_i (SNoLe x15 0) x17 (x7 (x11 (add_SNo x15 (minus_SNo 1)) x16 x17) (x12 (add_SNo x15 (minus_SNo 1)) x16 x17)))(∀ x15 . x15intx13 x15 = x11 (x8 x15) x9 x10)(∀ x15 . x15intx14 x15 = x13 x15)∀ x15 . x15intSNoLe 0 x15x5 x15 = x14 x15
Conjecture cda85..A1367 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 . x19int∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)(∀ x23 . x23int∀ x24 . x24intx0 x23 x24 = mul_SNo (add_SNo x23 x24) x24)(∀ x23 . x23int∀ x24 . x24intx1 x23 x24 = mul_SNo x24 x24)(∀ x23 . x23intx2 x23 = x23)x3 = 1x4 = 2(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx5 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x0 (x5 (add_SNo x23 (minus_SNo 1)) x24 x25) (x6 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx6 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x1 (x5 (add_SNo x23 (minus_SNo 1)) x24 x25) (x6 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx7 x23 = x5 (x2 x23) x3 x4)(∀ x23 . x23intx8 x23 = x7 x23)(∀ x23 . x23int∀ x24 . x24intx9 x23 x24 = mul_SNo (mul_SNo x23 x24) x23)(∀ x23 . x23int∀ x24 . x24intx10 x23 x24 = add_SNo x24 x24)(∀ x23 . x23intx11 x23 = add_SNo x23 (minus_SNo 1))x12 = 1x13 = 2(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx14 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x9 (x14 (add_SNo x23 (minus_SNo 1)) x24 x25) (x15 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx15 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x10 (x14 (add_SNo x23 (minus_SNo 1)) x24 x25) (x15 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23intx16 x23 = x14 (x11 x23) x12 x13)(∀ x23 . x23intx17 x23 = add_SNo x23 x23)(∀ x23 . x23intx18 x23 = x23)x19 = 1(∀ x23 . x23int∀ x24 . x24intx20 x23 x24 = If_i (SNoLe x23 0) x24 (x17 (x20 (add_SNo x23 (minus_SNo 1)) x24)))(∀ x23 . x23intx21 x23 = x20 (x18 x23) x19)(∀ x23 . x23intx22 x23 = mul_SNo (x16 x23) (mul_SNo (add_SNo 1 (add_SNo x23 x23)) (x21 x23)))∀ x23 . x23intSNoLe 0 x23x8 x23 = x22 x23
Conjecture 574e4..A136516 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 . x8int∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι → ι → ι . (∀ x11 . x11int∀ x12 . x12int∀ x13 . x13intx10 x11 x12 x13int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 : ι → ι → ι . (∀ x16 . x16int∀ x17 . x17intx15 x16 x17int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 . x17int∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)∀ x23 : ι → ι . (∀ x24 . x24intx23 x24int)∀ x24 : ι → ι → ι → ι . (∀ x25 . x25int∀ x26 . x26int∀ x27 . x27intx24 x25 x26 x27int)∀ x25 : ι → ι → ι → ι . (∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx25 x26 x27 x28int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)∀ x27 : ι → ι . (∀ x28 . x28intx27 x28int)∀ x28 : ι → ι . (∀ x29 . x29intx28 x29int)∀ x29 . x29int∀ x30 : ι → ι → ι . (∀ x31 . x31int∀ x32 . x32intx30 x31 x32int)∀ x31 : ι → ι . (∀ x32 . x32intx31 x32int)∀ x32 : ι → ι . (∀ x33 . x33intx32 x33int)(∀ x33 . x33intx0 x33 = add_SNo x33 x33)(∀ x33 . x33int∀ x34 . x34intx1 x33 x34 = x34)(∀ x33 . x33intx2 x33 = x33)(∀ x33 . x33int∀ x34 . x34intx3 x33 x34 = If_i (SNoLe x33 0) x34 (x0 (x3 (add_SNo x33 (minus_SNo 1)) x34)))(∀ x33 . x33int∀ x34 . x34intx4 x33 x34 = x3 (x1 x33 x34) (x2 x33))(∀ x33 . x33int∀ x34 . x34intx5 x33 x34 = add_SNo (x4 x33 x34) x33)(∀ x33 . x33int∀ x34 . x34intx6 x33 x34 = x34)(∀ x33 . x33intx7 x33 = x33)x8 = 1(∀ x33 . x33intx9 x33 = x33)(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx10 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x5 (x10 (add_SNo x33 (minus_SNo 1)) x34 x35) (x11 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx11 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x6 (x10 (add_SNo x33 (minus_SNo 1)) x34 x35) (x11 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx12 x33 = x10 (x7 x33) x8 (x9 x33))(∀ x33 . x33intx13 x33 = x12 x33)(∀ x33 . x33int∀ x34 . x34intx14 x33 x34 = mul_SNo x33 x34)(∀ x33 . x33int∀ x34 . x34intx15 x33 x34 = x34)(∀ x33 . x33intx16 x33 = add_SNo x33 (minus_SNo 1))x17 = 1(∀ x33 . x33intx18 x33 = add_SNo x33 x33)(∀ x33 . x33intx19 x33 = add_SNo x33 (minus_SNo 1))x20 = 2(∀ x33 . x33int∀ x34 . x34intx21 x33 x34 = If_i (SNoLe x33 0) x34 (x18 (x21 (add_SNo x33 (minus_SNo 1)) x34)))(∀ x33 . x33intx22 x33 = x21 (x19 x33) x20)(∀ x33 . x33intx23 x33 = add_SNo 1 (x22 x33))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx24 x33 x34 x35 = If_i (SNoLe x33 0) x34 (x14 (x24 (add_SNo x33 (minus_SNo 1)) x34 x35) (x25 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33int∀ x34 . x34int∀ x35 . x35intx25 x33 x34 x35 = If_i (SNoLe x33 0) x35 (x15 (x24 (add_SNo x33 (minus_SNo 1)) x34 x35) (x25 (add_SNo x33 (minus_SNo 1)) x34 x35)))(∀ x33 . x33intx26 x33 = x24 (x16 x33) x17 (x23 x33))(∀ x33 . x33intx27 x33 = add_SNo x33 x33)(∀ x33 . x33intx28 x33 = add_SNo x33 (minus_SNo 1))x29 = 2(∀ x33 . x33int∀ x34 . x34intx30 x33 x34 = If_i (SNoLe x33 0) x34 (x27 (x30 (add_SNo x33 (minus_SNo 1)) x34)))(∀ x33 . x33intx31 x33 = x30 (x28 x33) x29)(∀ x33 . x33intx32 x33 = mul_SNo (x26 x33) (If_i (SNoLe x33 0) 1 (add_SNo 1 (x31 x33))))∀ x33 . x33intSNoLe 0 x33x13 x33 = x32 x33
Conjecture 25da8..A136376 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)(∀ x18 . x18int∀ x19 . x19intx0 x18 x19 = add_SNo x18 x19)(∀ x18 . x18intx1 x18 = x18)(∀ x18 . x18intx2 x18 = add_SNo 1 x18)(∀ x18 . x18intx3 x18 = x18)x4 = 1(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx5 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x0 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20) (x6 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx6 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x1 (x5 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx7 x18 = x5 (x2 x18) (x3 x18) x4)(∀ x18 . x18intx8 x18 = x7 x18)(∀ x18 . x18int∀ x19 . x19intx9 x18 x19 = add_SNo x18 x19)(∀ x18 . x18intx10 x18 = x18)(∀ x18 . x18intx11 x18 = x18)(∀ x18 . x18intx12 x18 = add_SNo 1 x18)(∀ x18 . x18intx13 x18 = x18)(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx14 x18 x19 x20 = If_i (SNoLe x18 0) x19 (x9 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20) (x15 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18int∀ x19 . x19int∀ x20 . x20intx15 x18 x19 x20 = If_i (SNoLe x18 0) x20 (x10 (x14 (add_SNo x18 (minus_SNo 1)) x19 x20)))(∀ x18 . x18intx16 x18 = x14 (x11 x18) (x12 x18) (x13 x18))(∀ x18 . x18intx17 x18 = x16 x18)∀ x18 . x18intSNoLe 0 x18x8 x18 = x17 x18
Conjecture 49a1a..A134494 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι → ι → ι . (∀ x24 . x24int∀ x25 . x25int∀ x26 . x26intx23 x24 x25 x26int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)(∀ x26 . x26int∀ x27 . x27intx0 x26 x27 = add_SNo (mul_SNo 2 (add_SNo x26 x26)) x27)(∀ x26 . x26intx1 x26 = x26)(∀ x26 . x26intx2 x26 = add_SNo x26 x26)x3 = 1x4 = 1(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx5 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x0 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28) (x6 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx6 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x1 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx7 x26 = x5 (x2 x26) x3 x4)(∀ x26 . x26intx8 x26 = x7 x26)(∀ x26 . x26int∀ x27 . x27intx9 x26 x27 = add_SNo (mul_SNo 2 (add_SNo x26 x26)) x27)(∀ x26 . x26intx10 x26 = x26)(∀ x26 . x26intx11 x26 = add_SNo x26 (minus_SNo 1))(∀ x26 . x26intx12 x26 = add_SNo (If_i (SNoLe x26 0) 0 2) 1)x13 = 1(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx14 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x9 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28) (x15 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx15 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x10 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx16 x26 = x14 (x11 x26) (x12 x26) x13)(∀ x26 . x26int∀ x27 . x27intx17 x26 x27 = add_SNo x26 x27)(∀ x26 . x26intx18 x26 = x26)(∀ x26 . x26intx19 x26 = add_SNo (add_SNo x26 x26) x26)x20 = 1x21 = 2(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx22 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x17 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28) (x23 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx23 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x18 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx24 x26 = x22 (x19 x26) x20 x21)(∀ x26 . x26intx25 x26 = mul_SNo (x16 x26) (x24 x26))∀ x26 . x26intSNoLe 0 x26x8 x26 = x25 x26
Conjecture e3def..A134492 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 . x3int∀ x4 . x4int∀ x5 : ι → ι → ι → ι . (∀ x6 . x6int∀ x7 . x7int∀ x8 . x8intx5 x6 x7 x8int)∀ x6 : ι → ι → ι → ι . (∀ x7 . x7int∀ x8 . x8int∀ x9 . x9intx6 x7 x8 x9int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι . (∀ x9 . x9intx8 x9int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 : ι → ι . (∀ x13 . x13intx12 x13int)∀ x13 . x13int∀ x14 : ι → ι → ι → ι . (∀ x15 . x15int∀ x16 . x16int∀ x17 . x17intx14 x15 x16 x17int)∀ x15 : ι → ι → ι → ι . (∀ x16 . x16int∀ x17 . x17int∀ x18 . x18intx15 x16 x17 x18int)∀ x16 : ι → ι . (∀ x17 . x17intx16 x17int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι . (∀ x20 . x20intx19 x20int)∀ x20 . x20int∀ x21 . x21int∀ x22 : ι → ι → ι → ι . (∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx22 x23 x24 x25int)∀ x23 : ι → ι → ι → ι . (∀ x24 . x24int∀ x25 . x25int∀ x26 . x26intx23 x24 x25 x26int)∀ x24 : ι → ι . (∀ x25 . x25intx24 x25int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)(∀ x26 . x26int∀ x27 . x27intx0 x26 x27 = add_SNo (mul_SNo 2 (add_SNo x26 x26)) x27)(∀ x26 . x26intx1 x26 = x26)(∀ x26 . x26intx2 x26 = add_SNo x26 x26)x3 = 0x4 = 2(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx5 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x0 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28) (x6 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx6 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x1 (x5 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx7 x26 = x5 (x2 x26) x3 x4)(∀ x26 . x26intx8 x26 = x7 x26)(∀ x26 . x26int∀ x27 . x27intx9 x26 x27 = add_SNo (mul_SNo 2 (add_SNo x26 x26)) x27)(∀ x26 . x26intx10 x26 = x26)(∀ x26 . x26intx11 x26 = add_SNo x26 (minus_SNo 1))(∀ x26 . x26intx12 x26 = If_i (SNoLe x26 0) 1 2)x13 = 1(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx14 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x9 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28) (x15 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx15 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x10 (x14 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx16 x26 = x14 (x11 x26) (x12 x26) x13)(∀ x26 . x26int∀ x27 . x27intx17 x26 x27 = add_SNo (mul_SNo 2 (add_SNo x26 x26)) x27)(∀ x26 . x26intx18 x26 = x26)(∀ x26 . x26intx19 x26 = x26)x20 = 0x21 = 2(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx22 x26 x27 x28 = If_i (SNoLe x26 0) x27 (x17 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28) (x23 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26int∀ x27 . x27int∀ x28 . x28intx23 x26 x27 x28 = If_i (SNoLe x26 0) x28 (x18 (x22 (add_SNo x26 (minus_SNo 1)) x27 x28)))(∀ x26 . x26intx24 x26 = x22 (x19 x26) x20 x21)(∀ x26 . x26intx25 x26 = mul_SNo (mul_SNo (x16 x26) (x24 x26)) 2)∀ x26 . x26intSNoLe 0 x26x8 x26 = x25 x26
Conjecture f7f06..A134169 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 : ι → ι . (∀ x3 . x3intx2 x3int)∀ x3 : ι → ι . (∀ x4 . x4intx3 x4int)∀ x4 . x4int∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι . (∀ x7 . x7intx6 x7int)∀ x7 : ι → ι . (∀ x8 . x8intx7 x8int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι . (∀ x14 . x14intx13 x14int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 . x15int∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι . (∀ x18 . x18intx17 x18int)∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι . (∀ x21 . x21intx20 x21int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)(∀ x22 . x22intx0 x22 = add_SNo (add_SNo x22 (minus_SNo 1)) x22)(∀ x22 . x22intx1 x22 = add_SNo x22 (minus_SNo 1))(∀ x22 . x22intx2 x22 = add_SNo x22 x22)(∀ x22 . x22intx3 x22 = x22)x4 = 1(∀ x22 . x22int∀ x23 . x23intx5 x22 x23 = If_i (SNoLe x22 0) x23 (x2 (x5 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx6 x22 = x5 (x3 x22) x4)(∀ x22 . x22intx7 x22 = x6 x22)(∀ x22 . x22int∀ x23 . x23intx8 x22 x23 = If_i (SNoLe x22 0) x23 (x0 (x8 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx9 x22 = x8 (x1 x22) (x7 x22))(∀ x22 . x22intx10 x22 = x9 x22)(∀ x22 . x22intx11 x22 = add_SNo (mul_SNo 2 (mul_SNo x22 x22)) (minus_SNo x22))x12 = 1(∀ x22 . x22intx13 x22 = add_SNo x22 x22)(∀ x22 . x22intx14 x22 = add_SNo x22 (minus_SNo 1))x15 = 1(∀ x22 . x22int∀ x23 . x23intx16 x22 x23 = If_i (SNoLe x22 0) x23 (x13 (x16 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx17 x22 = x16 (x14 x22) x15)(∀ x22 . x22intx18 x22 = If_i (SNoLe x22 0) 0 (x17 x22))(∀ x22 . x22int∀ x23 . x23intx19 x22 x23 = If_i (SNoLe x22 0) x23 (x11 (x19 (add_SNo x22 (minus_SNo 1)) x23)))(∀ x22 . x22intx20 x22 = x19 x12 (x18 x22))(∀ x22 . x22intx21 x22 = add_SNo 1 (x20 x22))∀ x22 . x22intSNoLe 0 x22x10 x22 = x21 x22
Conjecture dc551..A1338 : ∀ x0 : ι → ι → ι . (∀ x1 . x1int∀ x2 . x2intx0 x1 x2int)∀ x1 : ι → ι → ι . (∀ x2 . x2int∀ x3 . x3intx1 x2 x3int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι → ι . (∀ x5 . x5int∀ x6 . x6intx4 x5 x6int)∀ x5 : ι → ι → ι . (∀ x6 . x6int∀ x7 . x7intx5 x6 x7int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 . x7int∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι → ι . (∀ x10 . x10int∀ x11 . x11intx9 x10 x11int)∀ x10 : ι → ι → ι . (∀ x11 . x11int∀ x12 . x12intx10 x11 x12int)∀ x11 : ι → ι . (∀ x12 . x12intx11 x12int)∀ x12 . x12int∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι . (∀ x15 . x15intx14 x15int)∀ x15 : ι → ι . (∀ x16 . x16intx15 x16int)∀ x16 : ι → ι → ι . (∀ x17 . x17int∀ x18 . x18intx16 x17 x18int)∀ x17 : ι → ι → ι . (∀ x18 . x18int∀ x19 . x19intx17 x18 x19int)∀ x18 . x18int∀ x19 : ι → ι → ι . (∀ x20 . x20int∀ x21 . x21intx19 x20 x21int)∀ x20 : ι → ι → ι . (∀ x21 . x21int∀ x22 . x22intx20 x21 x22int)∀ x21 : ι → ι → ι . (∀ x22 . x22int∀ x23 . x23intx21 x22 x23int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)∀ x23 . x23int∀ x24 : ι → ι → ι . (∀ x25 . x25int∀ x26 . x26intx24 x25 x26int)∀ x25 : ι → ι . (∀ x26 . x26intx25 x26int)∀ x26 : ι → ι . (∀ x27 . x27intx26 x27int)(∀ x27 . x27int∀ x28 . x28intx0 x27 x28 = add_SNo 1 (mul_SNo x27 x28))(∀ x27 . x27int∀ x28 . x28intx1 x27 x28 = x28)x2 = 1(∀ x27 . x27int∀ x28 . x28intx3 x27 x28 = If_i (SNoLe x27 0) x28 (x0 (x3 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27int∀ x28 . x28intx4 x27 x28 = x3 (x1 x27 x28) x2)(∀ x27 . x27int∀ x28 . x28intx5 x27 x28 = add_SNo (x4 x27 x28) x27)(∀ x27 . x27int∀ x28 . x28intx6 x27 x28 = add_SNo x28 (minus_SNo 1))x7 = 0(∀ x27 . x27int∀ x28 . x28intx8 x27 x28 = If_i (SNoLe x27 0) x28 (x5 (x8 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27int∀ x28 . x28intx9 x27 x28 = x8 (x6 x27 x28) x7)(∀ x27 . x27int∀ x28 . x28intx10 x27 x28 = x9 x27 x28)(∀ x27 . x27intx11 x27 = x27)x12 = 1(∀ x27 . x27int∀ x28 . x28intx13 x27 x28 = If_i (SNoLe x27 0) x28 (x10 (x13 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27intx14 x27 = x13 (x11 x27) x12)(∀ x27 . x27intx15 x27 = x14 x27)(∀ x27 . x27int∀ x28 . x28intx16 x27 x28 = add_SNo 1 (mul_SNo x27 x28))(∀ x27 . x27int∀ x28 . x28intx17 x27 x28 = add_SNo x28 (minus_SNo 1))x18 = 1(∀ x27 . x27int∀ x28 . x28intx19 x27 x28 = If_i (SNoLe x27 0) x28 (x16 (x19 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27int∀ x28 . x28intx20 x27 x28 = x19 (x17 x27 x28) x18)(∀ x27 . x27int∀ x28 . x28intx21 x27 x28 = add_SNo (mul_SNo (x20 x27 x28) x28) x27)(∀ x27 . x27intx22 x27 = add_SNo x27 (minus_SNo 1))x23 = 1(∀ x27 . x27int∀ x28 . x28intx24 x27 x28 = If_i (SNoLe x27 0) x28 (x21 (x24 (add_SNo x27 (minus_SNo 1)) x28) x27))(∀ x27 . x27intx25 x27 = x24 (x22 x27) x23)(∀ x27 . x27intx26 x27 = add_SNo (add_SNo (x25 x27) x27) (minus_SNo (If_i (SNoLe x27 0) 0 2)))∀ x27 . x27intSNoLe 0 x27x15 x27 = x26 x27
Conjecture fcb50..A133384 : ∀ x0 : ι → ι . (∀ x1 . x1intx0 x1int)∀ x1 : ι → ι . (∀ x2 . x2intx1 x2int)∀ x2 . x2int∀ x3 : ι → ι → ι . (∀ x4 . x4int∀ x5 . x5intx3 x4 x5int)∀ x4 : ι → ι . (∀ x5 . x5intx4 x5int)∀ x5 : ι → ι . (∀ x6 . x6intx5 x6int)∀ x6 : ι → ι → ι . (∀ x7 . x7int∀ x8 . x8intx6 x7 x8int)∀ x7 : ι → ι → ι . (∀ x8 . x8int∀ x9 . x9intx7 x8 x9int)∀ x8 : ι → ι → ι . (∀ x9 . x9int∀ x10 . x10intx8 x9 x10int)∀ x9 : ι → ι . (∀ x10 . x10intx9 x10int)∀ x10 : ι → ι . (∀ x11 . x11intx10 x11int)∀ x11 : ι → ι → ι → ι . (∀ x12 . x12int∀ x13 . x13int∀ x14 . x14intx11 x12 x13 x14int)∀ x12 : ι → ι → ι → ι . (∀ x13 . x13int∀ x14 . x14int∀ x15 . x15intx12 x13 x14 x15int)∀ x13 : ι → ι → ι . (∀ x14 . x14int∀ x15 . x15intx13 x14 x15int)∀ x14 : ι → ι → ι . (∀ x15 . x15int∀ x16 . x16intx14 x15 x16int)∀ x15 . x15int∀ x16 . x16int∀ x17 . x17int∀ x18 : ι → ι . (∀ x19 . x19intx18 x19int)∀ x19 : ι → ι → ι → ι . (∀ x20 . x20int∀ x21 . x21int∀ x22 . x22intx19 x20 x21 x22int)∀ x20 : ι → ι → ι → ι . (∀ x21 . x21int∀ x22 . x22int∀ x23 . x23intx20 x21 x22 x23int)∀ x21 : ι → ι . (∀ x22 . x22intx21 x22int)∀ x22 : ι → ι . (∀ x23 . x23intx22 x23int)(∀ x23 . x23intx0 x23 = mul_SNo 2 (add_SNo (mul_SNo 2 (add_SNo x23 x23)) x23))(∀ x23 . x23intx1 x23 = add_SNo 1 x23)x2 = 1(∀ x23 . x23int∀ x24 . x24intx3 x23 x24 = If_i (SNoLe x23 0) x24 (x0 (x3 (add_SNo x23 (minus_SNo 1)) x24)))(∀ x23 . x23intx4 x23 = x3 (x1 x23) x2)(∀ x23 . x23intx5 x23 = add_SNo 2 (x4 x23))(∀ x23 . x23int∀ x24 . x24intx6 x23 x24 = mul_SNo x23 x24)(∀ x23 . x23int∀ x24 . x24intx7 x23 x24 = x24)(∀ x23 . x23int∀ x24 . x24intx8 x23 x24 = x24)(∀ x23 . x23intx9 x23 = x23)(∀ x23 . x23intx10 x23 = x23)(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx11 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x6 (x11 (add_SNo x23 (minus_SNo 1)) x24 x25) (x12 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx12 x23 x24 x25 = If_i (SNoLe x23 0) x25 (x7 (x11 (add_SNo x23 (minus_SNo 1)) x24 x25) (x12 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24intx13 x23 x24 = x11 (x8 x23 x24) (x9 x23) (x10 x23))(∀ x23 . x23int∀ x24 . x24intx14 x23 x24 = x13 x23 x24)x15 = 2x16 = 1x17 = add_SNo 2 (mul_SNo (mul_SNo 2 2) 2)(∀ x23 . x23intx18 x23 = x23)(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx19 x23 x24 x25 = If_i (SNoLe x23 0) x24 (x14 (x19 (add_SNo x23 (minus_SNo 1)) x24 x25) (x20 (add_SNo x23 (minus_SNo 1)) x24 x25)))(∀ x23 . x23int∀ x24 . x24int∀ x25 . x25intx20 x23 x24 x25 = If_i (SNoLe x23 0) x25 x15)(∀ x23 . x23intx21 x23 = x19 x16 x17 (x18 x23))(∀ x23 . x23intx22 x23 = add_SNo (x21 x23) 2)∀ x23 . x23intSNoLe 0 x23x5 x23 = x22 x23