Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrHsh..
/
bfdd6..
PUJpo..
/
61e46..
vout
PrHsh..
/
a22b3..
0.10 bars
TMYG7..
/
44776..
ownership of
bb678..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGMn..
/
baef7..
ownership of
a1a2b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXWe..
/
4390f..
ownership of
f065c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSA5..
/
cbd94..
ownership of
4123d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLDN..
/
1233e..
ownership of
086ce..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVCC..
/
66f2a..
ownership of
9198e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaNs..
/
9fd55..
ownership of
07089..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUuU..
/
d5ddb..
ownership of
ed495..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHjW..
/
dc153..
ownership of
c250a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQsu..
/
f4aef..
ownership of
d76c3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGgi..
/
0e96a..
ownership of
76d86..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNFk..
/
4c2c0..
ownership of
d4094..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQjc..
/
56780..
ownership of
8cb7d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdki..
/
5b508..
ownership of
473ae..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMsK..
/
a8ac1..
ownership of
56382..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXbF..
/
eb573..
ownership of
9468c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ6r..
/
9ab18..
ownership of
a13f5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdDu..
/
a688c..
ownership of
c3c70..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMBZ..
/
0d4bc..
ownership of
0f7a2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMcY..
/
6872a..
ownership of
a9aef..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZeZ..
/
6153e..
ownership of
91320..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHxr..
/
9041c..
ownership of
d6d83..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJnd..
/
1540c..
ownership of
e7747..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPFJ..
/
a9205..
ownership of
13d1c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdPt..
/
fd3f7..
ownership of
2a4c6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYWo..
/
9fd2f..
ownership of
62e5d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQfC..
/
6dd3d..
ownership of
ed8aa..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUPJ..
/
12046..
ownership of
f697e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZe9..
/
f8548..
ownership of
a4408..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVqJ..
/
e3757..
ownership of
f63d7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQcj..
/
78609..
ownership of
fb87d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ9S..
/
5e828..
ownership of
19aa9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPLT..
/
e67ab..
ownership of
1c511..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNQi..
/
bc3b0..
ownership of
a6a99..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMR6L..
/
b7e6e..
ownership of
d51c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWnd..
/
c8fe2..
ownership of
67d28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUTey..
/
bd9a6..
doc published by
PrCmT..
Known
df_uhgr__df_ushgr__df_upgr__df_umgr__df_uspgr__df_usgr__df_subgr__df_fusgr__df_nbgr__df_uvtx__df_cplgr__df_cusgr__df_vtxdg__df_rgr__df_rusgr__df_ewlks__df_wlks__df_wlkson
:
∀ x0 : ο .
(
wceq
cuhgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf
(
cdm
(
cv
x3
)
)
(
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
cushgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf1
(
cdm
(
cv
x3
)
)
(
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
cupgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf
(
cdm
(
cv
x3
)
)
(
crab
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
chash
)
c2
cle
)
(
λ x4 .
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
cumgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf
(
cdm
(
cv
x3
)
)
(
crab
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
chash
)
c2
)
(
λ x4 .
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
cuspgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf1
(
cdm
(
cv
x3
)
)
(
crab
(
λ x4 .
wbr
(
cfv
(
cv
x4
)
chash
)
c2
cle
)
(
λ x4 .
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
cusgr
(
cab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wf1
(
cdm
(
cv
x3
)
)
(
crab
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
chash
)
c2
)
(
λ x4 .
cdif
(
cpw
(
cv
x2
)
)
(
csn
c0
)
)
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
csubgr
(
copab
(
λ x1 x2 .
w3a
(
wss
(
cfv
(
cv
x1
)
cvtx
)
(
cfv
(
cv
x2
)
cvtx
)
)
(
wceq
(
cfv
(
cv
x1
)
ciedg
)
(
cres
(
cfv
(
cv
x2
)
ciedg
)
(
cdm
(
cfv
(
cv
x1
)
ciedg
)
)
)
)
(
wss
(
cfv
(
cv
x1
)
cedg
)
(
cpw
(
cfv
(
cv
x1
)
cvtx
)
)
)
)
)
⟶
wceq
cfusgr
(
crab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
cvtx
)
cfn
)
(
λ x1 .
cusgr
)
)
⟶
wceq
cnbgr
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cfv
(
cv
x1
)
cvtx
)
(
λ x1 x2 .
crab
(
λ x3 .
wrex
(
λ x4 .
wss
(
cpr
(
cv
x2
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x4 .
cfv
(
cv
x1
)
cedg
)
)
(
λ x3 .
cdif
(
cfv
(
cv
x1
)
cvtx
)
(
csn
(
cv
x2
)
)
)
)
)
⟶
wceq
cuvtx
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
cnbgr
)
)
(
λ x3 .
cdif
(
cfv
(
cv
x1
)
cvtx
)
(
csn
(
cv
x2
)
)
)
)
(
λ x2 .
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
ccplgr
(
cab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
cuvtx
)
(
cfv
(
cv
x1
)
cvtx
)
)
)
⟶
wceq
ccusgr
(
cin
cusgr
ccplgr
)
⟶
wceq
cvtxdg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cfv
(
cv
x1
)
cvtx
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
ciedg
)
(
λ x3 .
cmpt
(
λ x4 .
cv
x2
)
(
λ x4 .
co
(
cfv
(
crab
(
λ x5 .
wcel
(
cv
x4
)
(
cfv
(
cv
x5
)
(
cv
x3
)
)
)
(
λ x5 .
cdm
(
cv
x3
)
)
)
chash
)
(
cfv
(
crab
(
λ x5 .
wceq
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
csn
(
cv
x4
)
)
)
(
λ x5 .
cdm
(
cv
x3
)
)
)
chash
)
cxad
)
)
)
)
)
⟶
wceq
crgr
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x2
)
cxnn0
)
(
wral
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
(
cfv
(
cv
x1
)
cvtxdg
)
)
(
cv
x2
)
)
(
λ x3 .
cfv
(
cv
x1
)
cvtx
)
)
)
)
⟶
wceq
crusgr
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x1
)
cusgr
)
(
wbr
(
cv
x1
)
(
cv
x2
)
crgr
)
)
)
⟶
wceq
cewlks
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cxnn0
)
(
λ x1 x2 .
cab
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wcel
(
cv
x3
)
(
cword
(
cdm
(
cv
x4
)
)
)
)
(
wral
(
λ x5 .
wbr
(
cv
x2
)
(
cfv
(
cin
(
cfv
(
cfv
(
co
(
cv
x5
)
c1
cmin
)
(
cv
x3
)
)
(
cv
x4
)
)
(
cfv
(
cfv
(
cv
x5
)
(
cv
x3
)
)
(
cv
x4
)
)
)
chash
)
cle
)
(
λ x5 .
co
c1
(
cfv
(
cv
x3
)
chash
)
cfzo
)
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
)
)
⟶
wceq
cwlks
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
w3a
(
wcel
(
cv
x2
)
(
cword
(
cdm
(
cfv
(
cv
x1
)
ciedg
)
)
)
)
(
wf
(
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfz
)
(
cfv
(
cv
x1
)
cvtx
)
(
cv
x3
)
)
(
wral
(
λ x4 .
wif
(
wceq
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x4
)
c1
caddc
)
(
cv
x3
)
)
)
(
wceq
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
(
csn
(
cfv
(
cv
x4
)
(
cv
x3
)
)
)
)
(
wss
(
cpr
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
co
(
cv
x4
)
c1
caddc
)
(
cv
x3
)
)
)
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cv
x1
)
ciedg
)
)
)
)
(
λ x4 .
co
cc0
(
cfv
(
cv
x2
)
chash
)
cfzo
)
)
)
)
)
⟶
wceq
cwlkson
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
cfv
(
cv
x1
)
cvtx
)
(
λ x2 x3 .
copab
(
λ x4 x5 .
w3a
(
wbr
(
cv
x4
)
(
cv
x5
)
(
cfv
(
cv
x1
)
cwlks
)
)
(
wceq
(
cfv
cc0
(
cv
x5
)
)
(
cv
x2
)
)
(
wceq
(
cfv
(
cfv
(
cv
x4
)
chash
)
(
cv
x5
)
)
(
cv
x3
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_uhgr
:
wceq
cuhgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf
(
cdm
(
cv
x2
)
)
(
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_ushgr
:
wceq
cushgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf1
(
cdm
(
cv
x2
)
)
(
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_upgr
:
wceq
cupgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf
(
cdm
(
cv
x2
)
)
(
crab
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
chash
)
c2
cle
)
(
λ x3 .
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_umgr
:
wceq
cumgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf
(
cdm
(
cv
x2
)
)
(
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
chash
)
c2
)
(
λ x3 .
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_uspgr
:
wceq
cuspgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf1
(
cdm
(
cv
x2
)
)
(
crab
(
λ x3 .
wbr
(
cfv
(
cv
x3
)
chash
)
c2
cle
)
(
λ x3 .
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_usgr
:
wceq
cusgr
(
cab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wf1
(
cdm
(
cv
x2
)
)
(
crab
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
chash
)
c2
)
(
λ x3 .
cdif
(
cpw
(
cv
x1
)
)
(
csn
c0
)
)
)
(
cv
x2
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_subgr
:
wceq
csubgr
(
copab
(
λ x0 x1 .
w3a
(
wss
(
cfv
(
cv
x0
)
cvtx
)
(
cfv
(
cv
x1
)
cvtx
)
)
(
wceq
(
cfv
(
cv
x0
)
ciedg
)
(
cres
(
cfv
(
cv
x1
)
ciedg
)
(
cdm
(
cfv
(
cv
x0
)
ciedg
)
)
)
)
(
wss
(
cfv
(
cv
x0
)
cedg
)
(
cpw
(
cfv
(
cv
x0
)
cvtx
)
)
)
)
)
(proof)
Theorem
df_fusgr
:
wceq
cfusgr
(
crab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
cvtx
)
cfn
)
(
λ x0 .
cusgr
)
)
(proof)
Theorem
df_nbgr
:
wceq
cnbgr
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cfv
(
cv
x0
)
cvtx
)
(
λ x0 x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wss
(
cpr
(
cv
x1
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x0
)
cedg
)
)
(
λ x2 .
cdif
(
cfv
(
cv
x0
)
cvtx
)
(
csn
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_uvtx
:
wceq
cuvtx
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wral
(
λ x2 .
wcel
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
cnbgr
)
)
(
λ x2 .
cdif
(
cfv
(
cv
x0
)
cvtx
)
(
csn
(
cv
x1
)
)
)
)
(
λ x1 .
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_cplgr
:
wceq
ccplgr
(
cab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
cuvtx
)
(
cfv
(
cv
x0
)
cvtx
)
)
)
(proof)
Theorem
df_cusgr
:
wceq
ccusgr
(
cin
cusgr
ccplgr
)
(proof)
Theorem
df_vtxdg
:
wceq
cvtxdg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cfv
(
cv
x0
)
cvtx
)
(
λ x1 .
csb
(
cfv
(
cv
x0
)
ciedg
)
(
λ x2 .
cmpt
(
λ x3 .
cv
x1
)
(
λ x3 .
co
(
cfv
(
crab
(
λ x4 .
wcel
(
cv
x3
)
(
cfv
(
cv
x4
)
(
cv
x2
)
)
)
(
λ x4 .
cdm
(
cv
x2
)
)
)
chash
)
(
cfv
(
crab
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
csn
(
cv
x3
)
)
)
(
λ x4 .
cdm
(
cv
x2
)
)
)
chash
)
cxad
)
)
)
)
)
(proof)
Theorem
df_rgr
:
wceq
crgr
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cv
x1
)
cxnn0
)
(
wral
(
λ x2 .
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x0
)
cvtxdg
)
)
(
cv
x1
)
)
(
λ x2 .
cfv
(
cv
x0
)
cvtx
)
)
)
)
(proof)
Theorem
df_rusgr
:
wceq
crusgr
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cv
x0
)
cusgr
)
(
wbr
(
cv
x0
)
(
cv
x1
)
crgr
)
)
)
(proof)
Theorem
df_ewlks
:
wceq
cewlks
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cxnn0
)
(
λ x0 x1 .
cab
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wcel
(
cv
x2
)
(
cword
(
cdm
(
cv
x3
)
)
)
)
(
wral
(
λ x4 .
wbr
(
cv
x1
)
(
cfv
(
cin
(
cfv
(
cfv
(
co
(
cv
x4
)
c1
cmin
)
(
cv
x2
)
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x3
)
)
)
chash
)
cle
)
(
λ x4 .
co
c1
(
cfv
(
cv
x2
)
chash
)
cfzo
)
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
)
)
(proof)
Theorem
df_wlks
:
wceq
cwlks
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
w3a
(
wcel
(
cv
x1
)
(
cword
(
cdm
(
cfv
(
cv
x0
)
ciedg
)
)
)
)
(
wf
(
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfz
)
(
cfv
(
cv
x0
)
cvtx
)
(
cv
x2
)
)
(
wral
(
λ x3 .
wif
(
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
)
(
wceq
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
(
csn
(
cfv
(
cv
x3
)
(
cv
x2
)
)
)
)
(
wss
(
cpr
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
co
(
cv
x3
)
c1
caddc
)
(
cv
x2
)
)
)
(
cfv
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
cv
x0
)
ciedg
)
)
)
)
(
λ x3 .
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfzo
)
)
)
)
)
(proof)
Theorem
df_wlkson
:
wceq
cwlkson
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
cfv
(
cv
x0
)
cvtx
)
(
λ x1 x2 .
copab
(
λ x3 x4 .
w3a
(
wbr
(
cv
x3
)
(
cv
x4
)
(
cfv
(
cv
x0
)
cwlks
)
)
(
wceq
(
cfv
cc0
(
cv
x4
)
)
(
cv
x1
)
)
(
wceq
(
cfv
(
cfv
(
cv
x3
)
chash
)
(
cv
x4
)
)
(
cv
x2
)
)
)
)
)
)
(proof)