Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrKbo..
/
bb8a9..
PUWQA..
/
94410..
vout
PrKbo..
/
7e1f7..
0.10 bars
TMHHc..
/
306de..
ownership of
6d4bf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbXY..
/
fa8aa..
ownership of
c798c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHhu..
/
53080..
ownership of
23eaf..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXay..
/
aaf17..
ownership of
6ba06..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRHp..
/
ab930..
ownership of
01841..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMQd5..
/
e8171..
ownership of
9bb67..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJSD..
/
e6fbc..
ownership of
2fcb9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJsK..
/
a9816..
ownership of
85a9b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSEp..
/
7f251..
ownership of
71e0d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJop..
/
6ca3a..
ownership of
1e899..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFEi..
/
01f22..
ownership of
b42dc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcNH..
/
730f2..
ownership of
4d054..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVre..
/
eb026..
ownership of
edcd6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX2a..
/
f30d4..
ownership of
73195..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJeL..
/
61ef7..
ownership of
dced0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcR1..
/
53b5e..
ownership of
7af73..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHkq..
/
df342..
ownership of
9b7cc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFZ1..
/
9be7e..
ownership of
a9e8d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMai9..
/
ec088..
ownership of
459c5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSUR..
/
acd11..
ownership of
8943e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUVb..
/
7d9b0..
ownership of
bafe1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaZN..
/
2e45b..
ownership of
bd146..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdyU..
/
a758a..
ownership of
71e87..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYhz..
/
20496..
ownership of
9f790..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdpJ..
/
1b4e5..
ownership of
cbd45..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZbc..
/
44d02..
ownership of
80f89..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFnn..
/
d3311..
ownership of
74e2e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSBm..
/
b69c4..
ownership of
ca960..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRo3..
/
1b077..
ownership of
d0de9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc65..
/
da51d..
ownership of
426f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKkF..
/
7184c..
ownership of
d6590..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTjM..
/
af827..
ownership of
9ee63..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMT1A..
/
ce256..
ownership of
de938..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWhG..
/
94758..
ownership of
2fe49..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMN1u..
/
a342b..
ownership of
8dce5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbaq..
/
82f99..
ownership of
6b871..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUaM6..
/
7b15b..
doc published by
PrCmT..
Known
df_minmar1__df_cpmat__df_mat2pmat__df_cpmat2mat__df_decpmat__df_pm2mp__df_chpmat__df_top__df_topon__df_topsp__df_bases__df_cld__df_ntr__df_cls__df_nei__df_lp__df_perf__df_cn
:
∀ x0 : ο .
(
wceq
cminmar1
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cmpt2
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cv
x1
)
(
λ x6 x7 .
cif
(
wceq
(
cv
x6
)
(
cv
x4
)
)
(
cif
(
wceq
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cur
)
(
cfv
(
cv
x2
)
c0g
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
)
)
)
)
)
⟶
wceq
ccpmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
cfv
(
cv
x6
)
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
cco1
)
)
(
cfv
(
cv
x2
)
c0g
)
)
(
λ x6 .
cn
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmat
)
cbs
)
)
)
⟶
wceq
cmat2pmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
cpl1
)
cascl
)
)
)
)
)
⟶
wceq
ccpmat2mat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
ccpmat
)
(
λ x3 .
cmpt2
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cv
x1
)
(
λ x4 x5 .
cfv
cc0
(
cfv
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
cco1
)
)
)
)
)
⟶
wceq
cdecpmat
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cmpt2
(
λ x3 x4 .
cdm
(
cdm
(
cv
x1
)
)
)
(
λ x3 x4 .
cdm
(
cdm
(
cv
x1
)
)
)
(
λ x3 x4 .
cfv
(
cv
x2
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x1
)
)
cco1
)
)
)
)
⟶
wceq
cpm2mp
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmat
)
cbs
)
(
λ x3 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
(
λ x4 .
csb
(
cfv
(
cv
x4
)
cpl1
)
(
λ x5 .
co
(
cv
x5
)
(
cmpt
(
λ x6 .
cn0
)
(
λ x6 .
co
(
co
(
cv
x3
)
(
cv
x6
)
cdecpmat
)
(
co
(
cv
x6
)
(
cfv
(
cv
x4
)
cv1
)
(
cfv
(
cfv
(
cv
x5
)
cmgp
)
cmg
)
)
(
cfv
(
cv
x5
)
cvsca
)
)
)
cgsu
)
)
)
)
)
⟶
wceq
cchpmat
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
cfv
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
cbs
)
(
λ x3 .
cfv
(
co
(
co
(
cfv
(
cv
x2
)
cv1
)
(
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmat
)
cur
)
(
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmat
)
cvsca
)
)
(
cfv
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
cmat2pmat
)
)
(
cfv
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmat
)
csg
)
)
(
co
(
cv
x1
)
(
cfv
(
cv
x2
)
cpl1
)
cmdat
)
)
)
)
⟶
wceq
ctop
(
cab
(
λ x1 .
wa
(
wral
(
λ x2 .
wcel
(
cuni
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
(
wral
(
λ x2 .
wral
(
λ x3 .
wcel
(
cin
(
cv
x2
)
(
cv
x3
)
)
(
cv
x1
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
)
⟶
wceq
ctopon
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
crab
(
λ x2 .
wceq
(
cv
x1
)
(
cuni
(
cv
x2
)
)
)
(
λ x2 .
ctop
)
)
)
⟶
wceq
ctps
(
cab
(
λ x1 .
wcel
(
cfv
(
cv
x1
)
ctopn
)
(
cfv
(
cfv
(
cv
x1
)
cbs
)
ctopon
)
)
)
⟶
wceq
ctb
(
cab
(
λ x1 .
wral
(
λ x2 .
wral
(
λ x3 .
wss
(
cin
(
cv
x2
)
(
cv
x3
)
)
(
cuni
(
cin
(
cv
x1
)
(
cpw
(
cin
(
cv
x2
)
(
cv
x3
)
)
)
)
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
cv
x1
)
)
)
⟶
wceq
ccld
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
cdif
(
cuni
(
cv
x1
)
)
(
cv
x2
)
)
(
cv
x1
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
)
)
⟶
wceq
cnt
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
cuni
(
cin
(
cv
x1
)
(
cpw
(
cv
x2
)
)
)
)
)
)
⟶
wceq
ccl
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
cint
(
crab
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
)
(
λ x3 .
cfv
(
cv
x1
)
ccld
)
)
)
)
)
⟶
wceq
cnei
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
crab
(
λ x3 .
wrex
(
λ x4 .
wa
(
wss
(
cv
x2
)
(
cv
x4
)
)
(
wss
(
cv
x4
)
(
cv
x3
)
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
cpw
(
cuni
(
cv
x1
)
)
)
)
)
)
⟶
wceq
clp
(
cmpt
(
λ x1 .
ctop
)
(
λ x1 .
cmpt
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
(
λ x2 .
cab
(
λ x3 .
wcel
(
cv
x3
)
(
cfv
(
cdif
(
cv
x2
)
(
csn
(
cv
x3
)
)
)
(
cfv
(
cv
x1
)
ccl
)
)
)
)
)
)
⟶
wceq
cperf
(
crab
(
λ x1 .
wceq
(
cfv
(
cuni
(
cv
x1
)
)
(
cfv
(
cv
x1
)
clp
)
)
(
cuni
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
ccn
(
cmpt2
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
ctop
)
(
λ x1 x2 .
crab
(
λ x3 .
wral
(
λ x4 .
wcel
(
cima
(
ccnv
(
cv
x3
)
)
(
cv
x4
)
)
(
cv
x1
)
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
co
(
cuni
(
cv
x2
)
)
(
cuni
(
cv
x1
)
)
cmap
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_minmar1
:
wceq
cminmar1
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cv
x0
)
(
λ x5 x6 .
cif
(
wceq
(
cv
x5
)
(
cv
x3
)
)
(
cif
(
wceq
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cur
)
(
cfv
(
cv
x1
)
c0g
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
)
)
)
)
)
(proof)
Theorem
df_cpmat
:
wceq
ccpmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wceq
(
cfv
(
cv
x5
)
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
cco1
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x5 .
cn
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmat
)
cbs
)
)
)
(proof)
Theorem
df_mat2pmat
:
wceq
cmat2pmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
cpl1
)
cascl
)
)
)
)
)
(proof)
Theorem
df_cpmat2mat
:
wceq
ccpmat2mat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
ccpmat
)
(
λ x2 .
cmpt2
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cv
x0
)
(
λ x3 x4 .
cfv
cc0
(
cfv
(
co
(
cv
x3
)
(
cv
x4
)
(
cv
x2
)
)
cco1
)
)
)
)
)
(proof)
Theorem
df_decpmat
:
wceq
cdecpmat
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cmpt2
(
λ x2 x3 .
cdm
(
cdm
(
cv
x0
)
)
)
(
λ x2 x3 .
cdm
(
cdm
(
cv
x0
)
)
)
(
λ x2 x3 .
cfv
(
cv
x1
)
(
cfv
(
co
(
cv
x2
)
(
cv
x3
)
(
cv
x0
)
)
cco1
)
)
)
)
(proof)
Theorem
df_pm2mp
:
wceq
cpm2mp
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmat
)
cbs
)
(
λ x2 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
(
λ x3 .
csb
(
cfv
(
cv
x3
)
cpl1
)
(
λ x4 .
co
(
cv
x4
)
(
cmpt
(
λ x5 .
cn0
)
(
λ x5 .
co
(
co
(
cv
x2
)
(
cv
x5
)
cdecpmat
)
(
co
(
cv
x5
)
(
cfv
(
cv
x3
)
cv1
)
(
cfv
(
cfv
(
cv
x4
)
cmgp
)
cmg
)
)
(
cfv
(
cv
x4
)
cvsca
)
)
)
cgsu
)
)
)
)
)
(proof)
Theorem
df_chpmat
:
wceq
cchpmat
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
cfv
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
cbs
)
(
λ x2 .
cfv
(
co
(
co
(
cfv
(
cv
x1
)
cv1
)
(
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmat
)
cur
)
(
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmat
)
cvsca
)
)
(
cfv
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
cmat2pmat
)
)
(
cfv
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmat
)
csg
)
)
(
co
(
cv
x0
)
(
cfv
(
cv
x1
)
cpl1
)
cmdat
)
)
)
)
(proof)
Theorem
df_top
:
wceq
ctop
(
cab
(
λ x0 .
wa
(
wral
(
λ x1 .
wcel
(
cuni
(
cv
x1
)
)
(
cv
x0
)
)
(
λ x1 .
cpw
(
cv
x0
)
)
)
(
wral
(
λ x1 .
wral
(
λ x2 .
wcel
(
cin
(
cv
x1
)
(
cv
x2
)
)
(
cv
x0
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
cv
x0
)
)
)
)
(proof)
Theorem
df_topon
:
wceq
ctopon
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
crab
(
λ x1 .
wceq
(
cv
x0
)
(
cuni
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
)
(proof)
Theorem
df_topsp
:
wceq
ctps
(
cab
(
λ x0 .
wcel
(
cfv
(
cv
x0
)
ctopn
)
(
cfv
(
cfv
(
cv
x0
)
cbs
)
ctopon
)
)
)
(proof)
Theorem
df_bases
:
wceq
ctb
(
cab
(
λ x0 .
wral
(
λ x1 .
wral
(
λ x2 .
wss
(
cin
(
cv
x1
)
(
cv
x2
)
)
(
cuni
(
cin
(
cv
x0
)
(
cpw
(
cin
(
cv
x1
)
(
cv
x2
)
)
)
)
)
)
(
λ x2 .
cv
x0
)
)
(
λ x1 .
cv
x0
)
)
)
(proof)
Theorem
df_cld
:
wceq
ccld
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
crab
(
λ x1 .
wcel
(
cdif
(
cuni
(
cv
x0
)
)
(
cv
x1
)
)
(
cv
x0
)
)
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
)
)
(proof)
Theorem
df_ntr
:
wceq
cnt
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
cuni
(
cin
(
cv
x0
)
(
cpw
(
cv
x1
)
)
)
)
)
)
(proof)
Theorem
df_cls
:
wceq
ccl
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
cint
(
crab
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
)
(
λ x2 .
cfv
(
cv
x0
)
ccld
)
)
)
)
)
(proof)
Theorem
df_nei
:
wceq
cnei
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wss
(
cv
x1
)
(
cv
x3
)
)
(
wss
(
cv
x3
)
(
cv
x2
)
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x0
)
)
)
)
)
)
(proof)
Theorem
df_lp
:
wceq
clp
(
cmpt
(
λ x0 .
ctop
)
(
λ x0 .
cmpt
(
λ x1 .
cpw
(
cuni
(
cv
x0
)
)
)
(
λ x1 .
cab
(
λ x2 .
wcel
(
cv
x2
)
(
cfv
(
cdif
(
cv
x1
)
(
csn
(
cv
x2
)
)
)
(
cfv
(
cv
x0
)
ccl
)
)
)
)
)
)
(proof)
Theorem
df_perf
:
wceq
cperf
(
crab
(
λ x0 .
wceq
(
cfv
(
cuni
(
cv
x0
)
)
(
cfv
(
cv
x0
)
clp
)
)
(
cuni
(
cv
x0
)
)
)
(
λ x0 .
ctop
)
)
(proof)
Theorem
df_cn
:
wceq
ccn
(
cmpt2
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
ctop
)
(
λ x0 x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wcel
(
cima
(
ccnv
(
cv
x2
)
)
(
cv
x3
)
)
(
cv
x0
)
)
(
λ x3 .
cv
x1
)
)
(
λ x2 .
co
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x0
)
)
cmap
)
)
)
(proof)