∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u3 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ x1 x3 x4)) ⟶ (∀ x2 . x2 ⊆ x0 ⟶ atleastp u6 x2 ⟶ not (∀ x3 . x3 ∈ x2 ⟶ ∀ x4 . x4 ∈ x2 ⟶ (x3 = x4 ⟶ ∀ x5 : ο . x5) ⟶ not (x1 x3 x4))) ⟶ (∀ x2 . x2 ∈ x0 ⟶ ∀ x3 . x3 ∈ x0 ⟶ (x2 = x3 ⟶ ∀ x4 : ο . x4) ⟶ not (x1 x2 x3) ⟶ atleastp (binintersect (DirGraphOutNeighbors x0 x1 x2) (DirGraphOutNeighbors x0 x1 x3)) u2) ⟶ ∀ x2 x3 x4 x5 . x2 ⊆ x0 ⟶ x3 ⊆ x0 ⟶ x4 ⊆ x0 ⟶ x5 ⊆ x0 ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x2) ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x3) ⟶ (∀ x6 . x6 ∈ x4 ⟶ nIn x6 x5) ⟶ (∀ x6 . x6 ∈ x2 ⟶ nIn x6 x3) ⟶ (∀ x6 . x6 ∈ x2 ⟶ nIn x6 x5) ⟶ (∀ x6 . x6 ∈ x3 ⟶ nIn x6 x5) ⟶ ∀ x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 . x6 ∈ x4 ⟶ x7 ∈ x4 ⟶ x3 = SetAdjoin (SetAdjoin (UPair x10 x11) x12) x13 ⟶ x14 ∈ x2 ⟶ x15 ∈ x5 ⟶ (x7 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x6 ⟶ ∀ x16 : ο . x16) ⟶ (x8 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x7 ⟶ ∀ x16 : ο . x16) ⟶ (x9 = x8 ⟶ ∀ x16 : ο . x16) ⟶ x1 x6 x7 ⟶ x1 x7 x8 ⟶ x1 x8 x9 ⟶ x1 x9 x6 ⟶ x1 x6 x10 ⟶ x1 x6 x15 ⟶ x1 x7 x14 ⟶ x1 x7 x11 ⟶ x1 x12 x15 ⟶ not (x1 x14 x6) ⟶ x1 x14 x15 ⟶ x1 x13 x15 ⟶ ∀ x16 . x16 ∈ x3 ⟶ not (x1 x14 x16) |
|