∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3 ⟶ x1 x3 x2) ⟶ (∀ x2 . x2 ∈ x0 ⟶ equip (DirGraphOutNeighbors x0 x1 x2) u5) ⟶ ∀ x2 x3 x4 x5 x6 x7 . x6 ⊆ x0 ⟶ x5 ⊆ x0 ⟶ x6 = {x9 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x9) (DirGraphOutNeighbors x0 x1 x2)) u1} ⟶ x4 = setminus (DirGraphOutNeighbors x0 x1 x2) (Sing x3) ⟶ (∀ x8 . x8 ∈ x6 ⟶ not (x1 x3 x8)) ⟶ (∀ x8 . x8 ∈ x0 ⟶ ∀ x9 : ο . (x8 = x2 ⟶ x9) ⟶ (x8 = x3 ⟶ x9) ⟶ (x8 ∈ x4 ⟶ x9) ⟶ (x8 ∈ x5 ⟶ x9) ⟶ (x8 ∈ x6 ⟶ x9) ⟶ (x8 ∈ x7 ⟶ x9) ⟶ x9) ⟶ (∀ x8 . x8 ∈ x6 ⟶ ∀ x9 : ο . (∀ x10 . x10 ∈ x6 ⟶ ∀ x11 . x11 ∈ x6 ⟶ (x10 = x11 ⟶ ∀ x12 : ο . x12) ⟶ x10 ∈ DirGraphOutNeighbors x0 x1 x8 ⟶ x11 ∈ DirGraphOutNeighbors x0 x1 x8 ⟶ not (x1 x10 x11) ⟶ (∀ x12 . x12 ∈ x6 ⟶ nIn x12 (SetAdjoin (UPair x8 x10) x11) ⟶ not (x1 x8 x12)) ⟶ x9) ⟶ x9) ⟶ (∀ x8 . x8 ∈ x6 ⟶ ∀ x9 . x9 ∈ x6 ⟶ (x8 = x9 ⟶ ∀ x10 : ο . x10) ⟶ ∀ x10 . x10 ∈ binintersect (DirGraphOutNeighbors x0 x1 x8) (DirGraphOutNeighbors x0 x1 x9) ⟶ x10 ∈ x6) ⟶ (∀ x8 . x8 ∈ x6 ⟶ nIn x8 x5) ⟶ ∀ x8 x9 : ι → ι . (∀ x10 . x10 ∈ x6 ⟶ ∀ x11 . x11 ∈ DirGraphOutNeighbors x0 x1 x2 ⟶ x1 x11 x10 ⟶ x11 = x8 x10) ⟶ (∀ x10 . x10 ∈ x6 ⟶ x9 x10 ∈ x5) ⟶ (∀ x10 . x10 ∈ x6 ⟶ x1 x10 (x9 x10)) ⟶ (∀ x10 . x10 ∈ x5 ⟶ ∀ x11 : ο . (∀ x12 . and (x12 ∈ x6) (x9 x12 = x10) ⟶ x11) ⟶ x11) ⟶ ∀ x10 . x10 ∈ x6 ⟶ ∀ x11 : ο . (∀ x12 . and (x12 ∈ x7) (x1 x10 x12) ⟶ x11) ⟶ x11 |
|