Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJGW..
/
c150f..
PUdmi..
/
6247a..
vout
PrJGW..
/
32edc..
1.99 bars
TMHZF..
/
e190c..
ownership of
548f8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc7V..
/
f84aa..
ownership of
e1dfd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNkK..
/
27bc3..
ownership of
98f68..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaHG..
/
54995..
ownership of
df009..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPH7..
/
a2d06..
ownership of
f1cac..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGmr..
/
08ad5..
ownership of
f9cb3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEg2..
/
d37f2..
ownership of
09d0b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZsV..
/
fca38..
ownership of
3097b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN9h..
/
891f4..
ownership of
447f5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFXG..
/
828ea..
ownership of
5b7fb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYg3..
/
1f5df..
ownership of
5b618..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKse..
/
3d1a7..
ownership of
170ae..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU98..
/
bf33f..
ownership of
7412a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRgb..
/
1ea88..
ownership of
27579..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa1h..
/
3538e..
ownership of
a08a7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNDA..
/
12e88..
ownership of
650aa..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHFL..
/
0e2f5..
ownership of
e7395..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN5U..
/
0e7a8..
ownership of
b51a5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVAm..
/
c10dc..
ownership of
43b81..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLaK..
/
4af68..
ownership of
0fea5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFhY..
/
1408d..
ownership of
8484b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQY1..
/
a3c77..
ownership of
693d1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJkC..
/
2adb3..
ownership of
c75ec..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFP5..
/
cb045..
ownership of
38c21..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGcs..
/
d635f..
ownership of
950bd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXcF..
/
a5333..
ownership of
7f366..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSiW..
/
fdefb..
ownership of
1798d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSaT..
/
40330..
ownership of
67542..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXcB..
/
5d33d..
ownership of
aa823..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa9H..
/
703ea..
ownership of
4da61..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaE7..
/
10861..
ownership of
6afe7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKFS..
/
ccb33..
ownership of
e0a27..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd9A..
/
352cc..
ownership of
0dcda..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQLe..
/
7ca54..
ownership of
217a4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJNp..
/
86d4a..
ownership of
3e999..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJnf..
/
4c136..
ownership of
77329..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSPS..
/
74a0b..
ownership of
ff764..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEyS..
/
401f7..
ownership of
151c0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ4n..
/
c8706..
ownership of
c842a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKQW..
/
9b0a2..
ownership of
52617..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ1D..
/
096d3..
ownership of
c09b1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR3o..
/
d9407..
ownership of
11a7e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFqq..
/
91cca..
ownership of
9c283..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ15..
/
8bd12..
ownership of
e0ce2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLiR..
/
8777a..
ownership of
5ca0f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLgK..
/
90ee0..
ownership of
39663..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcoJ..
/
45a08..
ownership of
f4e87..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMrt..
/
ecef9..
ownership of
4456e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUfB..
/
db6f2..
ownership of
a1610..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPYZ..
/
bcdc3..
ownership of
51f7f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcKx..
/
e2238..
ownership of
18e36..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdCy..
/
7e9b3..
ownership of
51272..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLai..
/
82bc2..
ownership of
96f1c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSL8..
/
b1fcd..
ownership of
c72f4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb3r..
/
a9c92..
ownership of
bcf0f..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJcL..
/
33bc2..
ownership of
6cd8a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKXK..
/
109f4..
ownership of
dfe2d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV51..
/
81ff1..
ownership of
96d01..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUQM9..
/
00513..
doc published by
PrGxv..
Definition
dfe2d..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
57d6a..
:
ι
→
ι
→
ι
Param
3cd3c..
:
ι
Param
7a0ec..
:
ι
Param
5b8fe..
:
ι
Param
bcddf..
:
ι
→
(
ι
→
ι
) →
ι
Param
67ee8..
:
ι
Param
25ca3..
:
ι
Param
f3baa..
:
ι
Param
2f6f1..
:
ι
Definition
bcf0f..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
f3baa..
x0
)
(
57d6a..
(
57d6a..
f3baa..
x1
)
x2
)
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
x2
)
)
)
)
)
)
)
)
Definition
96f1c..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
x0
)
(
57d6a..
(
57d6a..
f3baa..
x1
)
x2
)
)
)
(
λ x3 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
(
λ x4 .
57d6a..
(
57d6a..
x4
x2
)
x3
)
)
)
)
)
Param
and
:
ο
→
ο
→
ο
Param
aac29..
:
(
ι
→
ι
→
ο
) →
ο
Definition
18e36..
:=
λ x0 :
ι →
ι → ο
.
and
(
aac29..
x0
)
(
x0
dfe2d..
bcf0f..
)
Param
505b1..
:
(
ι
→
ι
→
ο
) →
ο
Param
d478c..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Conjecture
fe7ba..
:
∀ x0 x1 :
ι →
ι → ο
.
aac29..
x0
⟶
505b1..
x1
⟶
d478c..
x0
x1
bcf0f..
Param
6fe8d..
:
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
(
ι
→
ι
→
ο
) →
ι
→
ι
→
ο
Param
5c39b..
:
ι
→
ι
→
ο
Conjecture
a2bbc..
:
∀ x0 x1 :
ι →
ι → ο
.
aac29..
x0
⟶
505b1..
x1
⟶
6fe8d..
x0
x1
5c39b..
96f1c..
bcf0f..
Definition
a1610..
:=
λ x0 :
ι →
ι → ο
.
and
(
505b1..
x0
)
(
x0
dfe2d..
96f1c..
)
Definition
f4e87..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
Definition
5ca0f..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
x0
)
)
)
)
)
Definition
9c283..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
dfe2d..
x0
)
x1
)
x0
)
(
bcddf..
(
57d6a..
3cd3c..
x0
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
x1
)
(
λ x3 .
x2
)
)
)
)
)
)
)
Definition
c09b1..
:=
λ x0 :
ι →
ι → ο
.
and
(
18e36..
x0
)
(
x0
f4e87..
5ca0f..
)
Conjecture
879c3..
:
∀ x0 x1 :
ι →
ι → ο
.
18e36..
x0
⟶
a1610..
x1
⟶
d478c..
x0
x1
5ca0f..
Conjecture
e348c..
:
∀ x0 x1 :
ι →
ι → ο
.
18e36..
x0
⟶
a1610..
x1
⟶
6fe8d..
x0
x1
5c39b..
9c283..
5ca0f..
Definition
c842a..
:=
λ x0 :
ι →
ι → ο
.
and
(
a1610..
x0
)
(
x0
f4e87..
9c283..
)
Definition
ff764..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
Definition
3e999..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
x1
)
)
)
)
)
Definition
0dcda..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
2f6f1..
x0
)
x1
)
)
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
(
57d6a..
dfe2d..
x0
)
x1
)
x1
)
(
bcddf..
(
57d6a..
3cd3c..
x0
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
x1
)
(
λ x3 .
x3
)
)
)
)
)
)
)
Definition
6afe7..
:=
λ x0 :
ι →
ι → ο
.
and
(
c09b1..
x0
)
(
x0
ff764..
3e999..
)
Conjecture
f28ac..
:
∀ x0 x1 :
ι →
ι → ο
.
c09b1..
x0
⟶
c842a..
x1
⟶
d478c..
x0
x1
3e999..
Conjecture
78997..
:
∀ x0 x1 :
ι →
ι → ο
.
c09b1..
x0
⟶
c842a..
x1
⟶
6fe8d..
x0
x1
5c39b..
0dcda..
3e999..
Definition
aa823..
:=
λ x0 :
ι →
ι → ο
.
and
(
c842a..
x0
)
(
x0
ff764..
0dcda..
)
Definition
1798d..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
62b32..
:
ι
Definition
950bd..
:=
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
f3baa..
x0
)
x2
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
f3baa..
x1
)
x2
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
62b32..
x0
)
x1
)
)
x2
)
)
)
)
)
)
)
)
)
Definition
c75ec..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
x0
)
x2
)
)
(
λ x3 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
f3baa..
x1
)
x2
)
)
(
λ x4 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
62b32..
x0
)
x1
)
)
(
λ x5 .
57d6a..
(
57d6a..
(
57d6a..
x5
x2
)
x3
)
x4
)
)
)
)
)
)
Definition
8484b..
:=
λ x0 :
ι →
ι → ο
.
and
(
6afe7..
x0
)
(
x0
1798d..
950bd..
)
Conjecture
57c7a..
:
∀ x0 x1 :
ι →
ι → ο
.
6afe7..
x0
⟶
aa823..
x1
⟶
d478c..
x0
x1
950bd..
Conjecture
cbf41..
:
∀ x0 x1 :
ι →
ι → ο
.
6afe7..
x0
⟶
aa823..
x1
⟶
6fe8d..
x0
x1
5c39b..
c75ec..
950bd..
Definition
43b81..
:=
λ x0 :
ι →
ι → ο
.
and
(
aa823..
x0
)
(
x0
1798d..
c75ec..
)
Definition
e7395..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
62f06..
:
ι
Definition
fb4c3..
:=
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
5b8fe..
)
5b8fe..
)
)
Param
c8911..
:
ι
Definition
a08a7..
:=
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x0 .
57d6a..
(
57d6a..
62b32..
x0
)
(
57d6a..
c8911..
x0
)
)
Definition
7412a..
:=
λ x0 :
ι →
ι → ο
.
and
(
8484b..
x0
)
(
x0
e7395..
fb4c3..
)
Conjecture
104a2..
:
∀ x0 x1 :
ι →
ι → ο
.
8484b..
x0
⟶
43b81..
x1
⟶
d478c..
x0
x1
fb4c3..
Conjecture
77591..
:
∀ x0 x1 :
ι →
ι → ο
.
8484b..
x0
⟶
43b81..
x1
⟶
6fe8d..
x0
x1
5c39b..
a08a7..
fb4c3..
Definition
5b618..
:=
λ x0 :
ι →
ι → ο
.
and
(
43b81..
x0
)
(
x0
e7395..
a08a7..
)
Definition
447f5..
:=
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x0
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x1
x0
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x0
x1
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x1
)
)
(
prim0
(
prim0
x0
x0
)
(
prim0
x0
x0
)
)
)
)
)
(
prim0
(
prim1
(
λ x0 .
prim1
(
λ x1 .
prim0
(
prim0
(
prim0
x1
x0
)
(
prim0
x0
x0
)
)
(
prim0
(
prim0
x1
x1
)
(
prim0
x1
x1
)
)
)
)
)
(
prim1
(
λ x0 .
x0
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
Param
cb931..
:
ι
Param
1f2c4..
:
ι
Param
36978..
:
ι
Definition
09d0b..
:=
57d6a..
3cd3c..
(
57d6a..
cb931..
(
bcddf..
1f2c4..
(
λ x0 .
57d6a..
(
57d6a..
7a0ec..
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
(
λ x1 .
57d6a..
(
57d6a..
7a0ec..
5b8fe..
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
x1
x3
)
)
x2
)
)
)
)
(
57d6a..
(
57d6a..
f3baa..
(
57d6a..
(
57d6a..
36978..
x0
)
x1
)
)
x2
)
)
)
)
)
)
)
)
Definition
f1cac..
:=
bcddf..
1f2c4..
(
λ x0 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
(
57d6a..
(
57d6a..
62f06..
x0
)
5b8fe..
)
)
)
(
λ x1 .
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
5b8fe..
)
)
(
λ x2 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
7a0ec..
x0
)
(
bcddf..
(
57d6a..
67ee8..
(
57d6a..
25ca3..
x0
)
)
(
λ x3 .
57d6a..
(
57d6a..
f3baa..
(
57d6a..
x1
x3
)
)
x2
)
)
)
)
(
λ x3 .
bcddf..
(
57d6a..
3cd3c..
(
57d6a..
(
57d6a..
36978..
x0
)
x1
)
)
(
λ x4 .
57d6a..
(
57d6a..
x4
x2
)
x3
)
)
)
)
)
Definition
98f68..
:=
λ x0 :
ι →
ι → ο
.
and
(
7412a..
x0
)
(
x0
447f5..
09d0b..
)
Conjecture
019fe..
:
∀ x0 x1 :
ι →
ι → ο
.
7412a..
x0
⟶
5b618..
x1
⟶
d478c..
x0
x1
09d0b..
Conjecture
b45fa..
:
∀ x0 x1 :
ι →
ι → ο
.
7412a..
x0
⟶
5b618..
x1
⟶
6fe8d..
x0
x1
5c39b..
f1cac..
09d0b..
Definition
548f8..
:=
λ x0 :
ι →
ι → ο
.
and
(
5b618..
x0
)
(
x0
447f5..
f1cac..
)
Definition
98f68..
:=
98f68..
Definition
548f8..
:=
548f8..