Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : ((ι → ι)((ι → ι → ι)ι → ι)ι → (ι → ι) → ι)(ι → ι → (ι → ι) → ι) → ι . ∀ x1 : (ι → (((ι → ι)ι → ι)ι → ι → ι) → ι)ι → ι . ∀ x2 : (ι → ι → ι)(ι → ι)ι → ι → ι → ι . ∀ x3 : ((((ι → ι → ι)(ι → ι) → ι)ι → ι → ι) → ι)(ι → ι) → ι . (∀ x4 : (ι → ι → ι) → ι . ∀ x5 . ∀ x6 : (((ι → ι) → ι)(ι → ι)ι → ι)ι → ι . ∀ x7 : ((ι → ι → ι) → ι)(ι → ι)ι → ι → ι . x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . setsum (x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι)ι → ι . λ x12 . λ x13 : ι → ι . x1 (λ x14 . λ x15 : ((ι → ι)ι → ι)ι → ι → ι . setsum 0 0) (Inj1 0)) (λ x10 x11 . λ x12 : ι → ι . 0)) (x1 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι → ι . 0) (x2 (λ x10 x11 . x7 (λ x12 : ι → ι → ι . 0) (λ x12 . 0) 0 0) (λ x10 . 0) (x6 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . 0) 0) (x1 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0) (Inj0 0)))) (λ x9 . x9) = Inj1 0)(∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) x6 = x6 (setsum (x2 (λ x9 x10 . x1 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι → ι . 0) (setsum 0 0)) (λ x9 . x9) x5 0 0) (x1 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι → ι . x10 (λ x11 : ι → ι . λ x12 . 0) x9 (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0)) 0)))(∀ x4 . ∀ x5 : (ι → (ι → ι) → ι) → ι . ∀ x6 . ∀ x7 : ι → ι . x2 (λ x9 x10 . 0) (λ x9 . x2 (λ x10 x11 . x2 (λ x12 x13 . 0) (λ x12 . 0) (x0 (λ x12 : ι → ι . λ x13 : (ι → ι → ι)ι → ι . λ x14 . λ x15 : ι → ι . setsum 0 0) (λ x12 x13 . λ x14 : ι → ι . x0 (λ x15 : ι → ι . λ x16 : (ι → ι → ι)ι → ι . λ x17 . λ x18 : ι → ι . 0) (λ x15 x16 . λ x17 : ι → ι . 0))) (x7 x11) x11) (λ x10 . x9) (x1 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι → ι . 0) (x2 (λ x10 x11 . Inj1 0) (λ x10 . x1 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0) (x3 (λ x10 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) (λ x10 . 0)) (Inj1 0) (x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι)ι → ι . λ x12 . λ x13 : ι → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0)))) (x7 0) 0) x4 (x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι)ι → ι . λ x11 . λ x12 : ι → ι . Inj0 0) (λ x9 x10 . λ x11 : ι → ι . Inj0 (setsum (Inj0 0) (x1 (λ x12 . λ x13 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0)))) (setsum 0 (x7 0)) = x4)(∀ x4 : ι → ι → ι . ∀ x5 : (((ι → ι) → ι)(ι → ι)ι → ι)ι → ι → ι → ι . ∀ x6 : ((ι → ι → ι)ι → ι) → ι . ∀ x7 : ι → ι . x2 (λ x9 x10 . x2 (λ x11 x12 . 0) (λ x11 . x9) (x7 0) (x6 (λ x11 : ι → ι → ι . λ x12 . setsum 0 (x0 (λ x13 : ι → ι . λ x14 : (ι → ι → ι)ι → ι . λ x15 . λ x16 : ι → ι . 0) (λ x13 x14 . λ x15 : ι → ι . 0)))) 0) (λ x9 . 0) (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . 0) 0 (x2 (λ x9 x10 . x3 (λ x11 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . x10) (λ x11 . Inj0 0)) (λ x9 . x3 (λ x10 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . x6 (λ x11 : ι → ι → ι . λ x12 . 0)) (λ x10 . Inj0 0)) (x7 0) 0 (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum 0 0) (Inj1 0) (Inj0 0) 0)) (Inj0 (setsum (Inj1 0) (x7 0)))) (Inj1 (setsum 0 (x5 (λ x9 : (ι → ι) → ι . λ x10 : ι → ι . λ x11 . setsum 0 0) 0 (setsum 0 0) (setsum 0 0)))) (x7 (Inj1 0)) = x7 (Inj0 0))(∀ x4 . ∀ x5 : ι → ι → (ι → ι)ι → ι . ∀ x6 : ((ι → ι)ι → ι) → ι . ∀ x7 . x1 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι → ι . setsum (setsum (setsum 0 0) (setsum (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0) (x3 (λ x11 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) (λ x11 . 0)))) (setsum (setsum (x0 (λ x11 : ι → ι . λ x12 : (ι → ι → ι)ι → ι . λ x13 . λ x14 : ι → ι . 0) (λ x11 x12 . λ x13 : ι → ι . 0)) 0) (x10 (λ x11 : ι → ι . λ x12 . Inj0 0) (x10 (λ x11 : ι → ι . λ x12 . 0) 0 0) (Inj1 0)))) (x2 (λ x9 x10 . 0) (λ x9 . x6 (λ x10 : ι → ι . λ x11 . setsum (Inj1 0) (x2 (λ x12 x13 . 0) (λ x12 . 0) 0 0 0))) (setsum x4 (Inj1 (setsum 0 0))) 0 (Inj0 0)) = x2 (λ x9 x10 . setsum x7 (Inj1 x7)) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι)ι → ι . λ x12 . λ x13 : ι → ι . Inj1 0) (λ x10 x11 . λ x12 : ι → ι . 0)) (Inj0 0) (Inj0 (x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι)ι → ι . λ x11 . λ x12 : ι → ι . Inj1 0) (λ x9 x10 . λ x11 : ι → ι . Inj0 (x2 (λ x12 x13 . 0) (λ x12 . 0) 0 0 0)))) (setsum (Inj1 (x6 (λ x9 : ι → ι . λ x10 . Inj1 0))) (setsum (x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . x9 (λ x10 : ι → ι → ι . λ x11 : ι → ι . 0) 0 0) (λ x9 . Inj1 0)) (setsum 0 0))))(∀ x4 : ι → (ι → ι → ι)ι → ι . ∀ x5 x6 . ∀ x7 : ((ι → ι → ι)ι → ι) → ι . x1 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι → ι . setsum (x1 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι → ι . x9) (setsum (x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0) (x1 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0))) 0) (x2 (λ x9 x10 . x10) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι)ι → ι . λ x12 . λ x13 : ι → ι . x12) (λ x10 x11 . λ x12 : ι → ι . x3 (λ x13 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . x13 (λ x14 : ι → ι → ι . λ x15 : ι → ι . 0) 0 0) (λ x13 . 0))) x5 (Inj1 (Inj0 0)) (setsum 0 (Inj1 (x2 (λ x9 x10 . 0) (λ x9 . 0) 0 0 0)))) = x2 (λ x9 x10 . Inj0 0) (λ x9 . x1 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι → ι . x7 (λ x12 : ι → ι → ι . λ x13 . x11 (λ x14 : ι → ι . λ x15 . x2 (λ x16 x17 . 0) (λ x16 . 0) 0 0 0) 0 (x1 (λ x14 . λ x15 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0))) 0) (Inj0 (x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . setsum (Inj0 0) (setsum 0 0)) (λ x9 . x3 (λ x10 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . setsum 0 0) (λ x10 . x2 (λ x11 x12 . 0) (λ x11 . 0) 0 0 0)))) (setsum (setsum x5 (x1 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι → ι . Inj0 0) (x2 (λ x9 x10 . 0) (λ x9 . 0) 0 0 0))) (x1 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι → ι . Inj0 (x0 (λ x11 : ι → ι . λ x12 : (ι → ι → ι)ι → ι . λ x13 . λ x14 : ι → ι . 0) (λ x11 x12 . λ x13 : ι → ι . 0))) x5)) (setsum (setsum x6 (x2 (λ x9 x10 . x10) (λ x9 . x7 (λ x10 : ι → ι → ι . λ x11 . 0)) (x4 0 (λ x9 x10 . 0) 0) (Inj0 0) (x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) (λ x9 . 0)))) (x4 (x3 (λ x9 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) (λ x9 . x0 (λ x10 : ι → ι . λ x11 : (ι → ι → ι)ι → ι . λ x12 . λ x13 : ι → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0))) (λ x9 . x1 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι → ι . x11 (λ x12 : ι → ι . λ x13 . 0) 0 0)) x5)))(∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι)ι → ι . λ x11 . λ x12 : ι → ι . 0) (λ x9 x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι . λ x13 : (ι → ι → ι)ι → ι . λ x14 . λ x15 : ι → ι . x2 (λ x16 x17 . x15 x14) (λ x16 . x16) 0 (x15 (x3 (λ x16 : ((ι → ι → ι)(ι → ι) → ι)ι → ι → ι . 0) (λ x16 . 0))) (x0 (λ x16 : ι → ι . λ x17 : (ι → ι → ι)ι → ι . λ x18 . λ x19 : ι → ι . Inj0 0) (λ x16 x17 . λ x18 : ι → ι . x1 (λ x19 . λ x20 : ((ι → ι)ι → ι)ι → ι → ι . 0) 0))) (λ x12 x13 . λ x14 : ι → ι . Inj1 (x0 (λ x15 : ι → ι . λ x16 : (ι → ι → ι)ι → ι . λ x17 . λ x18 : ι → ι . 0) (λ x15 x16 . λ x17 : ι → ι . x14 0)))) = x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι)ι → ι . λ x11 . λ x12 : ι → ι . setsum (x0 (λ x13 : ι → ι . λ x14 : (ι → ι → ι)ι → ι . λ x15 . λ x16 : ι → ι . 0) (λ x13 x14 . λ x15 : ι → ι . 0)) 0) (λ x9 x10 . λ x11 : ι → ι . setsum 0 0))(∀ x4 x5 x6 x7 . x0 (λ x9 : ι → ι . λ x10 : (ι → ι → ι)ι → ι . λ x11 . λ x12 : ι → ι . 0) (λ x9 x10 . λ x11 : ι → ι . 0) = x4)False
as obj
-
as prop
06556..
theory
HF
stx
12ce4..
address
TMaUf..