Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : (ι → ι)(ι → ι)((ι → ι → ι) → ι) → ι . ∀ x1 : (ι → (ι → (ι → ι) → ι)(ι → ι → ι)(ι → ι) → ι)ι → ι . ∀ x2 : (ι → ι)ι → ι . ∀ x3 : (((ι → ι) → ι) → ι)(ι → ι)ι → ι . (∀ x4 x5 x6 x7 . x3 (λ x9 : (ι → ι) → ι . Inj0 x6) (λ x9 . x9) (x0 (λ x9 . x6) (λ x9 . x0 (λ x10 . 0) (λ x10 . Inj1 (setsum 0 0)) (λ x10 : ι → ι → ι . x1 (λ x11 . λ x12 : ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 : ι → ι . x3 (λ x15 : (ι → ι) → ι . 0) (λ x15 . 0) 0) 0)) (λ x9 : ι → ι → ι . x0 (λ x10 . 0) (λ x10 . setsum (Inj1 0) x6) (λ x10 : ι → ι → ι . Inj0 0))) = x0 (λ x9 . x9) (λ x9 . x9) (λ x9 : ι → ι → ι . setsum (x3 (λ x10 : (ι → ι) → ι . x7) (λ x10 . 0) x6) (x9 (x1 (λ x10 . λ x11 : ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 : ι → ι . 0) x5) 0)))(∀ x4 : (((ι → ι)ι → ι)ι → ι)((ι → ι)ι → ι) → ι . ∀ x5 x6 . ∀ x7 : ι → (ι → ι → ι) → ι . x3 (λ x9 : (ι → ι) → ι . x9 (λ x10 . x10)) (λ x9 . x3 (λ x10 : (ι → ι) → ι . x7 (setsum 0 (x7 0 (λ x11 x12 . 0))) (λ x11 x12 . 0)) (λ x10 . x9) (Inj1 x6)) 0 = setsum x6 x5)(∀ x4 : (((ι → ι)ι → ι)(ι → ι)ι → ι)ι → ι → ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι → ι) → ι)ι → ι . x2 (λ x9 . x1 (λ x10 . λ x11 : ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 : ι → ι . Inj1 (x13 0)) (x7 (λ x10 : ι → ι → ι . setsum (x0 (λ x11 . 0) (λ x11 . 0) (λ x11 : ι → ι → ι . 0)) (x7 (λ x11 : ι → ι → ι . 0) 0)) (Inj1 (Inj1 0)))) (x1 (λ x9 . λ x10 : ι → (ι → ι) → ι . λ x11 : ι → ι → ι . λ x12 : ι → ι . setsum (x2 (λ x13 . 0) (x3 (λ x13 : (ι → ι) → ι . 0) (λ x13 . 0) 0)) 0) 0) = Inj0 0)(∀ x4 . ∀ x5 : ι → ι . ∀ x6 x7 . x2 (λ x9 . x7) (x0 (λ x9 . x0 (λ x10 . setsum x7 0) (λ x10 . x0 (λ x11 . x1 (λ x12 . λ x13 : ι → (ι → ι) → ι . λ x14 : ι → ι → ι . λ x15 : ι → ι . 0) 0) (λ x11 . setsum 0 0) (λ x11 : ι → ι → ι . 0)) (λ x10 : ι → ι → ι . Inj1 (Inj1 0))) (λ x9 . x6) (λ x9 : ι → ι → ι . x5 0)) = Inj1 (x2 (λ x9 . setsum x7 (Inj1 (x5 0))) 0))(∀ x4 . ∀ x5 : (ι → ι)(ι → ι) → ι . ∀ x6 x7 . x1 (λ x9 . λ x10 : ι → (ι → ι) → ι . λ x11 : ι → ι → ι . λ x12 : ι → ι . x2 (λ x13 . x12 (x3 (λ x14 : (ι → ι) → ι . x3 (λ x15 : (ι → ι) → ι . 0) (λ x15 . 0) 0) (λ x14 . 0) (Inj0 0))) 0) (Inj0 x7) = Inj1 (Inj1 (setsum x7 (x2 (λ x9 . Inj0 0) (x1 (λ x9 . λ x10 : ι → (ι → ι) → ι . λ x11 : ι → ι → ι . λ x12 : ι → ι . 0) 0)))))(∀ x4 : (ι → ι) → ι . ∀ x5 . ∀ x6 x7 : ι → ι . x1 (λ x9 . λ x10 : ι → (ι → ι) → ι . λ x11 : ι → ι → ι . λ x12 : ι → ι . x10 0 (λ x13 . 0)) 0 = x5)(∀ x4 : (((ι → ι)ι → ι) → ι)ι → ι → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → ι)(ι → ι)(ι → ι)ι → ι . ∀ x7 : (ι → (ι → ι) → ι)ι → ι → ι . x0 (λ x9 . 0) (λ x9 . x0 (λ x10 . x6 (λ x11 . 0) (λ x11 . 0) (λ x11 . setsum (x3 (λ x12 : (ι → ι) → ι . 0) (λ x12 . 0) 0) (setsum 0 0)) (x2 (λ x11 . x9) (x3 (λ x11 : (ι → ι) → ι . 0) (λ x11 . 0) 0))) (x6 (λ x10 . x10) (λ x10 . Inj0 0) (λ x10 . x1 (λ x11 . λ x12 : ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) (x1 (λ x11 . λ x12 : ι → (ι → ι) → ι . λ x13 : ι → ι → ι . λ x14 : ι → ι . 0) 0))) (λ x10 : ι → ι → ι . 0)) (λ x9 : ι → ι → ι . 0) = Inj1 (x3 (λ x9 : (ι → ι) → ι . x5 (setsum 0 (x6 (λ x10 . 0) (λ x10 . 0) (λ x10 . 0) 0))) (λ x9 . x7 (λ x10 . λ x11 : ι → ι . Inj1 x9) (x1 (λ x10 . λ x11 : ι → (ι → ι) → ι . λ x12 : ι → ι → ι . λ x13 : ι → ι . Inj1 0) (Inj1 0)) 0) (setsum (Inj0 (x7 (λ x9 . λ x10 : ι → ι . 0) 0 0)) (Inj1 0))))(∀ x4 : ι → ι . ∀ x5 : (((ι → ι) → ι)(ι → ι)ι → ι) → ι . ∀ x6 : ι → (ι → ι)ι → ι → ι . ∀ x7 . x0 (λ x9 . x3 (λ x10 : (ι → ι) → ι . setsum (x10 (λ x11 . 0)) (x3 (λ x11 : (ι → ι) → ι . x10 (λ x12 . 0)) (λ x11 . x3 (λ x12 : (ι → ι) → ι . 0) (λ x12 . 0) 0) 0)) (λ x10 . 0) (setsum (x3 (λ x10 : (ι → ι) → ι . 0) (λ x10 . 0) (Inj1 0)) (Inj1 0))) (λ x9 . x2 (λ x10 . x2 (setsum (setsum 0 0)) 0) (setsum x7 0)) (λ x9 : ι → ι → ι . x5 (λ x10 : (ι → ι) → ι . λ x11 : ι → ι . λ x12 . x1 (λ x13 . λ x14 : ι → (ι → ι) → ι . λ x15 : ι → ι → ι . λ x16 : ι → ι . Inj1 0) (Inj1 0))) = setsum 0 (x2 (λ x9 . 0) 0))False
as obj
-
as prop
479b0..
theory
HF
stx
4660d..
address
TMdaa..