Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../23779..
PUX5S../7e33f..
vout
PrCit../639a4.. 3.95 bars
TMZBc../9c526.. ownership of b7308.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMS7M../cae7e.. ownership of 9f88c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcqk../711c4.. ownership of 97232.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMQu3../e33a5.. ownership of 14e8b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMaHW../de886.. ownership of 0138d.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdy2../e66a2.. ownership of bc4d0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUQsf../c77b6.. doc published by Pr4zB..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Param atleastpatleastp : ιιο
Param ordsuccordsucc : ιι
Param binunionbinunion : ιιι
Param UPairUPair : ιιι
Param SingSing : ιι
Known 1dc5a.. : ∀ x0 x1 x2 . nIn x2 x1atleastp x0 x1atleastp (ordsucc x0) (binunion x1 (Sing x2))
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known set_extset_ext : ∀ x0 x1 . x0x1x1x0x0 = x1
Known binunion_Subq_minbinunion_Subq_min : ∀ x0 x1 x2 . x0x2x1x2binunion x0 x1x2
Known Subq_traSubq_tra : ∀ x0 x1 x2 . x0x1x1x2x0x2
Known binunion_Subq_1binunion_Subq_1 : ∀ x0 x1 . x0binunion x0 x1
Known UPairEUPairE : ∀ x0 x1 x2 . x0UPair x1 x2or (x0 = x1) (x0 = x2)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SingISingI : ∀ x0 . x0Sing x0
Known UPairI1UPairI1 : ∀ x0 x1 . x0UPair x0 x1
Known UPairI2UPairI2 : ∀ x0 x1 . x1UPair x0 x1
Theorem 0138d.. : ∀ x0 x1 x2 x3 . nIn x2 x1nIn x3 x1(x2 = x3∀ x4 : ο . x4)atleastp x0 x1atleastp (ordsucc (ordsucc x0)) (binunion x1 (UPair x2 x3)) (proof)
Param u18 : ι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Param u4 : ι
Definition u5 := ordsucc u4
Definition u6 := ordsucc u5
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param equipequip : ιιο
Param setminussetminus : ιιι
Known 141e8.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1equip (setminus (DirGraphOutNeighbors u18 x0 x2) (Sing x1)) u4
Param binintersectbinintersect : ιιι
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known setminus_Subqsetminus_Subq : ∀ x0 x1 . setminus x0 x1x0
Known Sep_SubqSep_Subq : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1x0
Known setminusE1setminusE1 : ∀ x0 x1 x2 . x2setminus x0 x1x2x0
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known equip_symequip_sym : ∀ x0 x1 . equip x0 x1equip x1 x0
Known SepE1SepE1 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x2x0
Known cfabd.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2x2DirGraphOutNeighbors x0 x1 x3
Known 7fc90.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))∀ x2 . x2x0∀ x3 . x3DirGraphOutNeighbors x0 x1 x2∀ x4 . x4DirGraphOutNeighbors x0 x1 x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)
Known neq_i_symneq_i_sym : ∀ x0 x1 . (x0 = x1∀ x2 : ο . x2)x1 = x0∀ x2 : ο . x2
Param nat_pnat_p : ιο
Known 4fb58..Pigeonhole_not_atleastp_ordsucc : ∀ x0 . nat_p x0not (atleastp (ordsucc x0) x0)
Known nat_1nat_1 : nat_p 1
Known atleastp_traatleastp_tra : ∀ x0 x1 x2 . atleastp x0 x1atleastp x1 x2atleastp x0 x2
Known ada03.. : ∀ x0 x1 . x1x0∀ x2 . x2x0(x1 = x2∀ x3 : ο . x3)atleastp u2 x0
Known binintersectIbinintersectI : ∀ x0 x1 x2 . x2x0x2x1x2binintersect x0 x1
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known setminusE2setminusE2 : ∀ x0 x1 x2 . x2setminus x0 x1nIn x2 x1
Param SetAdjoinSetAdjoin : ιιι
Known aa241.. : ∀ x0 x1 x2 . ∀ x3 : ι → ο . x3 x0x3 x1x3 x2∀ x4 . x4SetAdjoin (UPair x0 x1) x2x3 x4
Known 5d098.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0(x1 = x2∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)atleastp u3 x0
Known 6be8c.. : ∀ x0 x1 x2 . x0SetAdjoin (UPair x0 x1) x2
Known 535ce.. : ∀ x0 x1 x2 . x1SetAdjoin (UPair x0 x1) x2
Known f4e2f.. : ∀ x0 x1 x2 . x2SetAdjoin (UPair x0 x1) x2
Known FalseEFalseE : False∀ x0 : ο . x0
Theorem 97232.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1∀ x3 . x3{x4 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x4) (DirGraphOutNeighbors u18 x0 x1)) u1}∀ x4 . x4{x5 ∈ setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))|equip (binintersect (DirGraphOutNeighbors u18 x0 x5) (DirGraphOutNeighbors u18 x0 x1)) u1}x0 x3 x2x0 x4 x2x3 = x4 (proof)
Known nat_2nat_2 : nat_p 2
Known Subq_atleastpSubq_atleastp : ∀ x0 x1 . x0x1atleastp x0 x1
Known 2b310.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2u18(x1 = x2∀ x3 : ο . x3)not (x0 x1 x2)atleastp (binintersect (DirGraphOutNeighbors u18 x0 x1) (DirGraphOutNeighbors u18 x0 x2)) u2
Theorem b7308.. : ∀ x0 : ι → ι → ο . (∀ x1 x2 . x0 x1 x2x0 x2 x1)(∀ x1 . x1u18atleastp u3 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)x0 x2 x3))(∀ x1 . x1u18atleastp u6 x1not (∀ x2 . x2x1∀ x3 . x3x1(x2 = x3∀ x4 : ο . x4)not (x0 x2 x3)))∀ x1 . x1u18∀ x2 . x2DirGraphOutNeighbors u18 x0 x1∀ x3 . x3DirGraphOutNeighbors u18 x0 x1(x2 = x3∀ x4 : ο . x4)∀ x4 . x4setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))∀ x5 . x5setminus u18 (binunion (DirGraphOutNeighbors u18 x0 x1) (Sing x1))x0 x4 x2x0 x5 x2x0 x4 x3x0 x5 x3x4 = x5 (proof)