Search for blocks/addresses/...

Proofgold Proposition

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . 62ee1.. x0 x1 x2 x3 x4 x5(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10and (x7 = x9) (x8 = x10))explicit_Field (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (x3 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x7 = x6 x9 x10)))) (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9)))) (x4 (prim0 (λ x9 . and (prim1 x9 x0) (x7 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x7 = x6 x11 x12)))) x9))) (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))))))∀ x7 : ο . (11fac.. (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6) (λ x8 . x6 (prim0 (λ x9 . and (prim1 x9 x0) (∃ x10 . and (prim1 x10 x0) (x8 = x6 x9 x10)))) x1) (λ x8 . x6 (prim0 (λ x9 . and (prim1 x9 x0) (x8 = x6 (prim0 (λ x11 . and (prim1 x11 x0) (∃ x12 . and (prim1 x12 x0) (x8 = x6 x11 x12)))) x9))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x8 x9 . x6 (x3 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))) (x3 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10))))) (λ x8 x9 . x6 (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))))) (x3 (x4 (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x8 = x6 x10 x11)))) (prim0 (λ x10 . and (prim1 x10 x0) (x9 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) x10)))) (x4 (prim0 (λ x10 . and (prim1 x10 x0) (x8 = x6 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x8 = x6 x12 x13)))) x10))) (prim0 (λ x10 . and (prim1 x10 x0) (∃ x11 . and (prim1 x11 x0) (x9 = x6 x10 x11)))))))((∀ x8 . prim1 x8 x0x6 x8 x1 = x8)∀ x8 : ο . ((∀ x9 : ο . ((∀ x10 : ο . ((∀ x11 : ο . ((∀ x12 : ο . (Subq x0 (3b429.. x0 (λ x13 . x0) (λ x13 x14 . True) x6)(∀ x13 . prim1 x13 x0prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x13 = x6 x15 x16))) = x13)x12)x12)x6 x1 x1 = x1x11)x11)x6 x2 x1 = x2x10)x10)(∀ x10 . prim1 x10 x0∀ x11 . prim1 x11 x0x6 (x3 (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x10 = x6 x13 x14)))) (prim0 (λ x13 . and (prim1 x13 x0) (∃ x14 . and (prim1 x14 x0) (x11 = x6 x13 x14))))) (x3 (prim0 (λ x13 . and (prim1 x13 x0) (x10 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x10 = x6 x15 x16)))) x13))) (prim0 (λ x13 . and (prim1 x13 x0) (x11 = x6 (prim0 (λ x15 . and (prim1 x15 x0) (∃ x16 . and (prim1 x16 x0) (x11 = x6 x15 x16)))) x13)))) = x3 x10 x11)x9)x9)(∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x10 = x6 x12 x13))))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x9 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (x10 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x10 = x6 x14 x15)))) x12)))))) (x3 (x4 (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x9 = x6 x12 x13)))) (prim0 (λ x12 . and (prim1 x12 x0) (x10 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x10 = x6 x14 x15)))) x12)))) (x4 (prim0 (λ x12 . and (prim1 x12 x0) (x9 = x6 (prim0 (λ x14 . and (prim1 x14 x0) (∃ x15 . and (prim1 x15 x0) (x9 = x6 x14 x15)))) x12))) (prim0 (λ x12 . and (prim1 x12 x0) (∃ x13 . and (prim1 x13 x0) (x10 = x6 x12 x13)))))) = x4 x9 x10)x8)x8)x7)x7
type
prop
theory
HoTg
name
-
proof
PUQ6P..
Megalodon
-
proofgold address
TMU85..
creator
3912 PrGxv../504f3..
owner
3912 PrGxv../504f3..
term root
e265a..