Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 : ο .
(
wceq
cmend
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
co
(
cv
x1
)
(
cv
x1
)
clmhm
)
(
λ x2 .
cun
(
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
cplusg
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
(
cof
(
cfv
(
cv
x1
)
cplusg
)
)
)
)
)
(
cop
(
cfv
cnx
cmulr
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
ccom
(
cv
x3
)
(
cv
x4
)
)
)
)
)
(
cpr
(
cop
(
cfv
cnx
csca
)
(
cfv
(
cv
x1
)
csca
)
)
(
cop
(
cfv
cnx
cvsca
)
(
cmpt2
(
λ x3 x4 .
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cxp
(
cfv
(
cv
x1
)
cbs
)
(
csn
(
cv
x3
)
)
)
(
cv
x4
)
(
cof
(
cfv
(
cv
x1
)
cvsca
)
)
)
)
)
)
)
)
)
⟶
wceq
csdrg
(
cmpt
(
λ x1 .
cdr
)
(
λ x1 .
crab
(
λ x2 .
wcel
(
co
(
cv
x1
)
(
cv
x2
)
cress
)
cdr
)
(
λ x2 .
cfv
(
cv
x1
)
csubrg
)
)
)
⟶
wceq
ccytp
(
cmpt
(
λ x1 .
cn
)
(
λ x1 .
co
(
cfv
(
cfv
ccnfld
cpl1
)
cmgp
)
(
cmpt
(
λ x2 .
cima
(
ccnv
(
cfv
(
co
(
cfv
ccnfld
cmgp
)
(
cdif
cc
(
csn
cc0
)
)
cress
)
cod
)
)
(
csn
(
cv
x1
)
)
)
(
λ x2 .
co
(
cfv
ccnfld
cv1
)
(
cfv
(
cv
x2
)
(
cfv
(
cfv
ccnfld
cpl1
)
cascl
)
)
(
cfv
(
cfv
ccnfld
cpl1
)
csg
)
)
)
cgsu
)
)
⟶
wceq
ctopsep
(
crab
(
λ x1 .
wrex
(
λ x2 .
wa
(
wbr
(
cv
x2
)
com
cdom
)
(
wceq
(
cfv
(
cv
x2
)
(
cfv
(
cv
x1
)
ccl
)
)
(
cuni
(
cv
x1
)
)
)
)
(
λ x2 .
cpw
(
cuni
(
cv
x1
)
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
ctoplnd
(
crab
(
λ x1 .
wral
(
λ x2 .
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x2
)
)
⟶
wrex
(
λ x3 .
wa
(
wbr
(
cv
x3
)
com
cdom
)
(
wceq
(
cuni
(
cv
x1
)
)
(
cuni
(
cv
x3
)
)
)
)
(
λ x3 .
cpw
(
cv
x1
)
)
)
(
λ x2 .
cpw
(
cv
x1
)
)
)
(
λ x1 .
ctop
)
)
⟶
wceq
crcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wa
(
wss
(
cv
x1
)
(
cv
x2
)
)
(
wss
(
cres
cid
(
cun
(
cdm
(
cv
x2
)
)
(
crn
(
cv
x2
)
)
)
)
(
cv
x2
)
)
)
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wb
(
whe
x1
x2
)
(
wss
(
cima
x2
x1
)
x1
)
)
⟶
(
∀ x1 x2 : ο .
x1
⟶
x2
⟶
x1
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
(
x1
⟶
x2
)
⟶
x1
⟶
x3
)
⟶
(
∀ x1 x2 x3 : ο .
(
x1
⟶
x2
⟶
x3
)
⟶
x2
⟶
x1
⟶
x3
)
⟶
(
∀ x1 x2 : ο .
(
x1
⟶
x2
)
⟶
wn
x2
⟶
wn
x1
)
⟶
(
∀ x1 : ο .
wn
(
wn
x1
)
⟶
x1
)
⟶
(
∀ x1 : ο .
x1
⟶
wn
(
wn
x1
)
)
⟶
(
∀ x1 x2 x3 x4 : ο .
wb
x1
x2
⟶
wif
x1
x4
x3
⟶
wif
x2
x4
x3
)
⟶
(
∀ x1 : ο .
wb
x1
x1
)
⟶
(
∀ x1 x2 x3 : ο .
wa
x2
x3
⟶
wif
x1
x2
x3
)
⟶
(
∀ x1 :
ι → ο
.
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
wceq
(
x2
x4
)
(
x3
x4
)
⟶
wsbc
x1
(
x2
x4
)
⟶
wsbc
x1
(
x3
x4
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
x1
x1
)
⟶
x0
)
⟶
x0
as obj
-
as prop
b36c5..
theory
SetMM
stx
ebbdd..
address
TMVeK..