Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr7wB..
/
02da0..
PUNFY..
/
5cc77..
vout
Pr7wB..
/
20304..
0.07 bars
TMQV7..
/
f13c2..
ownership of
f5522..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRpJ..
/
6b2d4..
ownership of
7593a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMES..
/
46b4f..
ownership of
3b41c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYaf..
/
4f3b4..
ownership of
36f23..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc9o..
/
00b6f..
ownership of
5ce4d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWt3..
/
54781..
ownership of
9273f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTFj..
/
29d39..
ownership of
c88a1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJYU..
/
ab3fa..
ownership of
a126c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPax..
/
11df2..
ownership of
9a6d8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZEo..
/
cb484..
ownership of
56a9c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYSf..
/
bc6dd..
ownership of
a62b0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdLr..
/
57d59..
ownership of
955eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYrW..
/
14be7..
ownership of
759ba..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUWL..
/
d298e..
ownership of
1bb33..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRGg..
/
c69b7..
ownership of
cce05..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVuN..
/
02516..
ownership of
8b528..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKap..
/
5937b..
ownership of
3887e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGnP..
/
6b64a..
ownership of
650a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSEG..
/
5e183..
ownership of
c7b0c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbBv..
/
861bb..
ownership of
2a256..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVFC..
/
972a7..
ownership of
ce596..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQFv..
/
86088..
ownership of
53706..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH8E..
/
0ef8d..
ownership of
68e20..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGvp..
/
77056..
ownership of
fd4eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFp1..
/
d51bc..
ownership of
0040c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLMv..
/
b071b..
ownership of
4c315..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHjf..
/
60050..
ownership of
43e16..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML4G..
/
a0c7c..
ownership of
93c51..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXBe..
/
66305..
ownership of
da995..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaET..
/
f4291..
ownership of
38ba6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTo9..
/
66009..
ownership of
a7d47..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNKM..
/
29f62..
ownership of
898bd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdpw..
/
7b7a4..
ownership of
ef4b1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXXh..
/
6b958..
ownership of
bd42f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWyF..
/
dadab..
ownership of
77ec5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG8A..
/
b1995..
ownership of
8b242..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHeQ..
/
3a694..
ownership of
6cbca..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdnq..
/
89fd3..
ownership of
9968e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR95..
/
90924..
ownership of
e5f60..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWAn..
/
67063..
ownership of
82bda..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGK1..
/
902d3..
ownership of
c28c7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML1q..
/
24e76..
ownership of
13559..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMZw..
/
3f685..
ownership of
9e014..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPE8..
/
87bab..
ownership of
e6f99..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFKC..
/
6917d..
ownership of
6274f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUKf..
/
8ff9f..
ownership of
3e627..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLSP..
/
36bba..
ownership of
b8971..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNpo..
/
f20cf..
ownership of
db2ed..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVzP..
/
ea58e..
ownership of
52fd9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLVP..
/
74d95..
ownership of
8585a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKnW..
/
0ba08..
ownership of
90df6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNNN..
/
da68f..
ownership of
30e15..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMExu..
/
2c677..
ownership of
236dc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWdQ..
/
48292..
ownership of
aae2a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLeU..
/
d7b38..
ownership of
9256b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHBc..
/
131a0..
ownership of
1ecd5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWA1..
/
c61ef..
ownership of
570d1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRwt..
/
501d2..
ownership of
10cc5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRe7..
/
f7852..
ownership of
bfb39..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG2y..
/
87491..
ownership of
1d448..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGJb..
/
e34ae..
ownership of
a4d5d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQew..
/
78c4d..
ownership of
f9752..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKiF..
/
08f93..
ownership of
bb92b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYis..
/
8ea0d..
ownership of
80dbd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc2J..
/
e2309..
ownership of
a6d15..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML18..
/
e862c..
ownership of
72c39..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdeW..
/
f0af2..
ownership of
5328d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKRV..
/
85809..
ownership of
82110..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb6t..
/
0faf2..
ownership of
39736..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUjC..
/
0990d..
ownership of
10dc7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdot..
/
efebd..
ownership of
e1408..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRi7..
/
e4735..
ownership of
a0c85..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVxv..
/
94bbf..
ownership of
54bb6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW6S..
/
f66a8..
ownership of
aa959..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGBz..
/
a6c76..
ownership of
8dac9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHPJ..
/
05926..
ownership of
40c01..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQiU..
/
a3280..
ownership of
773c6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKHU..
/
9a491..
ownership of
f1550..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSK5..
/
f7800..
ownership of
32b7a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHLq..
/
e8f34..
ownership of
163bc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZZv..
/
b47bf..
ownership of
5fe43..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQa3..
/
6690b..
ownership of
40523..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZvk..
/
00c21..
ownership of
d57ae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRbV..
/
62885..
ownership of
314fa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQow..
/
565f8..
ownership of
67584..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRzi..
/
c7ece..
ownership of
36521..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXK2..
/
b6d51..
ownership of
366f9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX5z..
/
7bfcc..
ownership of
6e7f6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYE7..
/
b0b1a..
ownership of
e1e4a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHGx..
/
854c9..
ownership of
e70f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdnP..
/
aab5c..
ownership of
36169..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTyY..
/
01ced..
ownership of
98c79..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZid..
/
24574..
ownership of
8fb4b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd5h..
/
06d66..
ownership of
fec92..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLa1..
/
71f84..
ownership of
af84f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQnC..
/
649d7..
ownership of
da017..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWSk..
/
5f3b9..
ownership of
a0d13..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSjW..
/
affac..
ownership of
b1546..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbpr..
/
eaa18..
ownership of
72a49..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKqR..
/
3313e..
ownership of
fb293..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbF9..
/
c583c..
ownership of
d123b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHBi..
/
49618..
ownership of
113d5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN4C..
/
b0b71..
ownership of
54fcb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcLT..
/
3599f..
ownership of
dbfc3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHju..
/
4e24e..
ownership of
e93fc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJZ9..
/
773d3..
ownership of
f5875..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVbs..
/
1c0ca..
ownership of
beda8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHK1..
/
489e2..
ownership of
547f6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRag..
/
1b862..
ownership of
8c5bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMant..
/
319eb..
ownership of
edc0b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcFm..
/
01ed8..
ownership of
cdd41..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTgu..
/
b3e3a..
ownership of
61987..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMda..
/
a79ea..
ownership of
46441..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHE9..
/
f7831..
ownership of
01c56..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUPtm..
/
d09d6..
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_add_SNo_4
SNo_add_SNo_4
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
x3
)
)
)
Theorem
SNo_add_SNo_5
SNo_add_SNo_5
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
x4
)
)
)
)
(proof)
Theorem
SNo_add_SNo_6
SNo_add_SNo_6
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
x5
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_7
SNo_add_SNo_7
:
∀ x0 x1 x2 x3 x4 x5 x6 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
x6
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_8
SNo_add_SNo_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
x7
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_9
SNo_add_SNo_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
x8
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_10
SNo_add_SNo_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
x9
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_11
SNo_add_SNo_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
x10
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_12
SNo_add_SNo_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
x11
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_13
SNo_add_SNo_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
x12
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_14
SNo_add_SNo_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_15
SNo_add_SNo_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_16
SNo_add_SNo_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_17
SNo_add_SNo_17
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_18
SNo_add_SNo_18
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_19
SNo_add_SNo_19
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
x18
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_20
SNo_add_SNo_20
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
x19
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_21
SNo_add_SNo_21
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
x20
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_22
SNo_add_SNo_22
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_23
SNo_add_SNo_23
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
x22
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_24
SNo_add_SNo_24
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
x23
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_25
SNo_add_SNo_25
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
x24
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_26
SNo_add_SNo_26
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
x25
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_27
SNo_add_SNo_27
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
x26
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_28
SNo_add_SNo_28
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_29
SNo_add_SNo_29
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
x28
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
SNo_add_SNo_30
SNo_add_SNo_30
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
(
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
minus_add_SNo_distr_m
minus_add_SNo_distr_m
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
add_SNo
x0
(
minus_SNo
x1
)
(proof)
Theorem
minus_add_SNo_distr_m_2
minus_add_SNo_distr_m_2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
x2
)
)
=
add_SNo
x0
(
add_SNo
x1
(
minus_SNo
x2
)
)
(proof)
Theorem
minus_add_SNo_distr_m_2b
minus_add_SNo_distr_m_2b
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
)
=
add_SNo
x0
x1
(proof)
Theorem
minus_add_SNo_distr_m_3
minus_add_SNo_distr_m_3
:
∀ x0 x1 x2 x3 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
x3
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
minus_SNo
x3
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_4
minus_add_SNo_distr_m_4
:
∀ x0 x1 x2 x3 x4 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
x4
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
minus_SNo
x4
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_5
minus_add_SNo_distr_m_5
:
∀ x0 x1 x2 x3 x4 x5 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
x5
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
minus_SNo
x5
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_6
minus_add_SNo_distr_m_6
:
∀ x0 x1 x2 x3 x4 x5 x6 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
x6
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
minus_SNo
x6
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_7
minus_add_SNo_distr_m_7
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
x7
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
minus_SNo
x7
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_8
minus_add_SNo_distr_m_8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
x8
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
minus_SNo
x8
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_9
minus_add_SNo_distr_m_9
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
x9
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
minus_SNo
x9
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_10
minus_add_SNo_distr_m_10
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
x10
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
minus_SNo
x10
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_11
minus_add_SNo_distr_m_11
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
x11
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
minus_SNo
x11
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_12
minus_add_SNo_distr_m_12
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
x12
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
minus_SNo
x12
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_13
minus_add_SNo_distr_m_13
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
minus_SNo
x13
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_14
minus_add_SNo_distr_m_14
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
minus_SNo
x14
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_15
minus_add_SNo_distr_m_15
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
minus_SNo
x15
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_16
minus_add_SNo_distr_m_16
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
minus_SNo
x16
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_17
minus_add_SNo_distr_m_17
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
minus_SNo
x17
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_18
minus_add_SNo_distr_m_18
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
x18
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
minus_SNo
x18
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_19
minus_add_SNo_distr_m_19
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
x19
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
minus_SNo
x19
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_20
minus_add_SNo_distr_m_20
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
x20
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
minus_SNo
x20
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_21
minus_add_SNo_distr_m_21
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
minus_SNo
x21
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_22
minus_add_SNo_distr_m_22
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
x22
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
minus_SNo
x22
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_23
minus_add_SNo_distr_m_23
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
x23
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
minus_SNo
x23
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_24
minus_add_SNo_distr_m_24
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
x24
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
minus_SNo
x24
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_25
minus_add_SNo_distr_m_25
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
x25
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
minus_SNo
x25
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_26
minus_add_SNo_distr_m_26
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
(
add_SNo
(
minus_SNo
x25
)
x26
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
minus_SNo
x26
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_27
minus_add_SNo_distr_m_27
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
(
add_SNo
(
minus_SNo
x25
)
(
add_SNo
(
minus_SNo
x26
)
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
minus_SNo
x27
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_28
minus_add_SNo_distr_m_28
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
(
add_SNo
(
minus_SNo
x25
)
(
add_SNo
(
minus_SNo
x26
)
(
add_SNo
(
minus_SNo
x27
)
x28
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
minus_SNo
x28
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_29
minus_add_SNo_distr_m_29
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
(
add_SNo
(
minus_SNo
x25
)
(
add_SNo
(
minus_SNo
x26
)
(
add_SNo
(
minus_SNo
x27
)
(
add_SNo
(
minus_SNo
x28
)
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
minus_SNo
x29
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)
Theorem
minus_add_SNo_distr_m_30
minus_add_SNo_distr_m_30
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 x25 x26 x27 x28 x29 x30 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNo
x3
⟶
SNo
x4
⟶
SNo
x5
⟶
SNo
x6
⟶
SNo
x7
⟶
SNo
x8
⟶
SNo
x9
⟶
SNo
x10
⟶
SNo
x11
⟶
SNo
x12
⟶
SNo
x13
⟶
SNo
x14
⟶
SNo
x15
⟶
SNo
x16
⟶
SNo
x17
⟶
SNo
x18
⟶
SNo
x19
⟶
SNo
x20
⟶
SNo
x21
⟶
SNo
x22
⟶
SNo
x23
⟶
SNo
x24
⟶
SNo
x25
⟶
SNo
x26
⟶
SNo
x27
⟶
SNo
x28
⟶
SNo
x29
⟶
SNo
x30
⟶
minus_SNo
(
add_SNo
(
minus_SNo
x0
)
(
add_SNo
(
minus_SNo
x1
)
(
add_SNo
(
minus_SNo
x2
)
(
add_SNo
(
minus_SNo
x3
)
(
add_SNo
(
minus_SNo
x4
)
(
add_SNo
(
minus_SNo
x5
)
(
add_SNo
(
minus_SNo
x6
)
(
add_SNo
(
minus_SNo
x7
)
(
add_SNo
(
minus_SNo
x8
)
(
add_SNo
(
minus_SNo
x9
)
(
add_SNo
(
minus_SNo
x10
)
(
add_SNo
(
minus_SNo
x11
)
(
add_SNo
(
minus_SNo
x12
)
(
add_SNo
(
minus_SNo
x13
)
(
add_SNo
(
minus_SNo
x14
)
(
add_SNo
(
minus_SNo
x15
)
(
add_SNo
(
minus_SNo
x16
)
(
add_SNo
(
minus_SNo
x17
)
(
add_SNo
(
minus_SNo
x18
)
(
add_SNo
(
minus_SNo
x19
)
(
add_SNo
(
minus_SNo
x20
)
(
add_SNo
(
minus_SNo
x21
)
(
add_SNo
(
minus_SNo
x22
)
(
add_SNo
(
minus_SNo
x23
)
(
add_SNo
(
minus_SNo
x24
)
(
add_SNo
(
minus_SNo
x25
)
(
add_SNo
(
minus_SNo
x26
)
(
add_SNo
(
minus_SNo
x27
)
(
add_SNo
(
minus_SNo
x28
)
(
add_SNo
(
minus_SNo
x29
)
x30
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
=
add_SNo
x0
(
add_SNo
x1
(
add_SNo
x2
(
add_SNo
x3
(
add_SNo
x4
(
add_SNo
x5
(
add_SNo
x6
(
add_SNo
x7
(
add_SNo
x8
(
add_SNo
x9
(
add_SNo
x10
(
add_SNo
x11
(
add_SNo
x12
(
add_SNo
x13
(
add_SNo
x14
(
add_SNo
x15
(
add_SNo
x16
(
add_SNo
x17
(
add_SNo
x18
(
add_SNo
x19
(
add_SNo
x20
(
add_SNo
x21
(
add_SNo
x22
(
add_SNo
x23
(
add_SNo
x24
(
add_SNo
x25
(
add_SNo
x26
(
add_SNo
x27
(
add_SNo
x28
(
add_SNo
x29
(
minus_SNo
x30
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
(proof)