Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrDsC..
/
b2663..
PUaGw..
/
43430..
vout
PrDsC..
/
43c46..
23.17 bars
TMNXs..
/
90be1..
ownership of
a69df..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMPVj..
/
dd192..
ownership of
062a2..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMGEQ..
/
8011d..
ownership of
e5024..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMP15..
/
5bff0..
ownership of
3abf2..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMaUy..
/
c9c3c..
ownership of
cfaa7..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMWhb..
/
716b1..
ownership of
e922d..
as prop with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMZbo..
/
4bb89..
ownership of
580fd..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMJ7H..
/
02184..
ownership of
3777f..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMS9U..
/
82365..
ownership of
f471c..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMSgk..
/
2cb19..
ownership of
b4463..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMSN9..
/
fa146..
ownership of
24e11..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
TMcRp..
/
ef695..
ownership of
fca8b..
as obj with payaddr
PrKYB..
rightscost 0.00 controlledby
PrKYB..
upto 0
PULps..
/
ed752..
doc published by
PrKYB..
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
1319b..
:=
λ x0 .
λ x1 :
ι → ι
.
λ x2 .
nat_primrec
x2
(
λ x3 .
x1
)
x0
Known
76108..
:
∀ x0 :
ι → ι
.
∀ x1 .
1319b..
0
x0
x1
=
x1
Param
omega
omega
:
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Known
99a2b..
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 :
ι → ι
.
∀ x2 .
1319b..
(
ordsucc
x0
)
x1
x2
=
x1
(
1319b..
x0
x1
x2
)
Param
nat_p
nat_p
:
ι
→
ο
Known
acd4e..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x0
)
⟶
∀ x3 .
nat_p
x3
⟶
1319b..
x3
x2
x1
∈
x0
Known
c6fca..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
=
x3
x4
)
⟶
∀ x4 .
nat_p
x4
⟶
1319b..
x4
x2
x1
=
1319b..
x4
x3
x1
Known
9bb87..
:
∀ x0 x1 .
x1
∈
x0
⟶
∀ x2 x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x0
)
⟶
∀ x4 :
ι → ι
.
(
∀ x5 .
x5
∈
x0
⟶
x4
(
x2
x5
)
=
x3
(
x4
x5
)
)
⟶
∀ x5 .
nat_p
x5
⟶
x4
(
1319b..
x5
x2
x1
)
=
1319b..
x5
x3
(
x4
x1
)
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Known
60ada..
:
∀ x0 x1 .
nat_p
x1
⟶
1319b..
x1
(
λ x3 .
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ordsucc
(
ap
x3
0
)
)
(
ap
x3
1
)
)
)
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
0
x0
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x1
x0
)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
7c549..
:
∀ x0 x1 .
nat_p
x1
⟶
1319b..
x1
(
λ x3 .
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
add_SNo
(
ap
x3
0
)
(
minus_SNo
1
)
)
(
ap
x3
1
)
)
)
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
0
x0
)
)
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
(
minus_SNo
x1
)
x0
)
Definition
139e8..
:=
λ x0 .
lam
x0
(
λ x1 .
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
0
x1
)
)
Param
int
int
:
ι
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
int_SNo_cases
int_SNo_cases
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x1
∈
omega
⟶
x0
x1
)
⟶
(
∀ x1 .
x1
∈
omega
⟶
x0
(
minus_SNo
x1
)
)
⟶
∀ x1 .
x1
∈
int
⟶
x0
x1
Param
SNo
SNo
:
ι
→
ο
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_0
SNo_0
:
SNo
0
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Param
ordinal
ordinal
:
ι
→
ο
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordinal_Subq_SNoLe
ordinal_Subq_SNoLe
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoLe
x0
x1
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
Subq_Empty
Subq_Empty
:
∀ x0 .
0
⊆
x0
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
minus_SNo_0
minus_SNo_0
:
minus_SNo
0
=
0
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Known
minus_SNo_Lt_contra
minus_SNo_Lt_contra
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
(
minus_SNo
x1
)
(
minus_SNo
x0
)
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
nat_0_in_ordsucc
nat_0_in_ordsucc
:
∀ x0 .
nat_p
x0
⟶
0
∈
ordsucc
x0
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Theorem
cfaa7..
:
∀ x0 .
x0
∈
int
⟶
∀ x1 : ο .
(
SNoLt
x0
0
⟶
minus_SNo
x0
∈
omega
⟶
x1
)
⟶
(
SNoLe
0
x0
⟶
not
(
SNoLt
x0
0
)
⟶
x0
∈
omega
⟶
x1
)
⟶
x1
(proof)
Param
pack_u
pack_u
:
ι
→
(
ι
→
ι
) →
ι
Definition
setprod
setprod
:=
λ x0 x1 .
lam
x0
(
λ x2 .
x1
)
Definition
24e11..
:=
λ x0 .
pack_u
(
setprod
int
x0
)
(
λ x1 .
lam
2
(
λ x2 .
If_i
(
x2
=
0
)
(
add_SNo
(
ap
x1
0
)
1
)
(
ap
x1
1
)
)
)
Definition
f471c..
:=
λ x0 x1 x2 .
lam
(
setprod
int
x0
)
(
λ x3 .
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x3
0
)
(
ap
x2
(
ap
x3
1
)
)
)
)
Param
unpack_u_i
unpack_u_i
:
ι
→
(
ι
→
(
ι
→
ι
) →
ι
) →
ι
Param
inv
inv
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Definition
580fd..
:=
λ x0 .
unpack_u_i
x0
(
λ x1 .
λ x2 :
ι → ι
.
lam
(
setprod
int
x1
)
(
λ x3 .
If_i
(
SNoLt
(
ap
x3
0
)
0
)
(
1319b..
(
minus_SNo
(
ap
x3
0
)
)
(
inv
x1
x2
)
(
ap
x3
1
)
)
(
1319b..
(
ap
x3
0
)
x2
(
ap
x3
1
)
)
)
)
Param
MetaAdjunction_strict
MetaAdjunction_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
True
True
:
ο
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Definition
HomSet
SetHom
:=
λ x0 x1 x2 .
x2
∈
setexp
x1
x0
Definition
lam_id
lam_id
:=
λ x0 .
lam
x0
(
λ x1 .
x1
)
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_u
struct_u
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x2
⟶
x3
x4
∈
x2
)
⟶
x1
(
pack_u
x2
x3
)
)
⟶
x1
x0
Param
unpack_u_o
unpack_u_o
:
ι
→
(
ι
→
(
ι
→
ι
) →
ο
) →
ο
Definition
bij
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Definition
Permutation
struct_u_bij
:=
λ x0 .
and
(
struct_u
x0
)
(
unpack_u_o
x0
(
λ x1 .
bij
x1
x1
)
)
Param
UnaryFuncHom
Hom_struct_u
:
ι
→
ι
→
ι
→
ο
Definition
struct_id
struct_id
:=
λ x0 .
lam_id
(
ap
x0
0
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Param
MetaFunctor_strict
MetaFunctor_strict
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaFunctor
MetaFunctor
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
ο
Param
MetaNatTrans
MetaNatTrans
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
ο
Param
MetaAdjunction
MetaAdjunction
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
) →
(
ι
→
ι
) →
(
ι
→
ι
) →
ο
Known
d6aa5..
MetaAdjunction_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor
x4
x5
x6
x7
x0
x1
x2
x3
x10
x11
⟶
MetaNatTrans
x0
x1
x2
x3
x0
x1
x2
x3
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
(
λ x14 .
x10
(
x8
x14
)
)
(
λ x14 x15 x16 .
x11
(
x8
x14
)
(
x8
x15
)
(
x9
x14
x15
x16
)
)
x12
⟶
MetaNatTrans
x4
x5
x6
x7
x4
x5
x6
x7
(
λ x14 .
x8
(
x10
x14
)
)
(
λ x14 x15 x16 .
x9
(
x10
x14
)
(
x10
x15
)
(
x11
x14
x15
x16
)
)
(
λ x14 .
x14
)
(
λ x14 x15 x16 .
x16
)
x13
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
⟶
MetaAdjunction_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Param
MetaCat
MetaCat
:
(
ι
→
ο
) →
(
ι
→
ι
→
ι
→
ο
) →
(
ι
→
ι
) →
(
ι
→
ι
→
ι
→
ι
→
ι
→
ι
) →
ο
Known
5cbb4..
MetaFunctor_strict_I
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x4
x5
x6
x7
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
⟶
MetaFunctor_strict
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
e4125..
MetaCatSet
:
MetaCat
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Known
17fce..
MetaCat_struct_u_bij
:
MetaCat
Permutation
UnaryFuncHom
struct_id
struct_comp
Known
2cb62..
MetaFunctorI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
(
∀ x10 .
x0
x10
⟶
x4
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 .
x0
x10
⟶
x0
x11
⟶
x1
x10
x11
x12
⟶
x5
(
x8
x10
)
(
x8
x11
)
(
x9
x10
x11
x12
)
)
⟶
(
∀ x10 .
x0
x10
⟶
x9
x10
x10
(
x2
x10
)
=
x6
(
x8
x10
)
)
⟶
(
∀ x10 x11 x12 x13 x14 .
x0
x10
⟶
x0
x11
⟶
x0
x12
⟶
x1
x10
x11
x13
⟶
x1
x11
x12
x14
⟶
x9
x10
x12
(
x3
x10
x11
x12
x14
x13
)
=
x7
(
x8
x10
)
(
x8
x11
)
(
x8
x12
)
(
x9
x11
x12
x14
)
(
x9
x10
x11
x13
)
)
⟶
MetaFunctor
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
pack_struct_u_I
pack_struct_u_I
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
x0
)
⟶
struct_u
(
pack_u
x0
x1
)
Known
unpack_u_o_eq
unpack_u_o_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ο
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_o
(
pack_u
x1
x2
)
x0
=
x0
x1
x2
Known
66c4c..
Hom_struct_u_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ι
.
∀ x4 .
UnaryFuncHom
(
pack_u
x0
x2
)
(
pack_u
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
ap
x4
(
x2
x6
)
=
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
tuple_2_setprod
tuple_2_setprod
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
x2
x3
)
∈
setprod
x0
x1
Known
ap0_Sigma
ap0_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
0
∈
x0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
ap1_Sigma
ap1_Sigma
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
ap
x2
1
∈
x1
(
ap
x2
0
)
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
pack_u_0_eq2
pack_u_0_eq2
:
∀ x0 .
∀ x1 :
ι → ι
.
x0
=
ap
(
pack_u
x0
x1
)
0
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Known
tuple_Sigma_eta
tuple_Sigma_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
lam
x0
x1
⟶
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
ap
x2
0
)
(
ap
x2
1
)
)
=
x2
Known
ac364..
MetaCat_struct_u_bij_Forgetful
:
MetaFunctor
Permutation
UnaryFuncHom
struct_id
struct_comp
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
Known
c1d68..
MetaNatTransI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 :
ι → ι
.
(
∀ x13 .
x0
x13
⟶
x5
(
x8
x13
)
(
x10
x13
)
(
x12
x13
)
)
⟶
(
∀ x13 x14 x15 .
x0
x13
⟶
x0
x14
⟶
x1
x13
x14
x15
⟶
x7
(
x8
x13
)
(
x10
x13
)
(
x10
x14
)
(
x11
x13
x14
x15
)
(
x12
x13
)
=
x7
(
x8
x13
)
(
x8
x14
)
(
x10
x14
)
(
x12
x14
)
(
x9
x13
x14
x15
)
)
⟶
MetaNatTrans
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
Known
nat_p_int
nat_p_int
:
∀ x0 .
nat_p
x0
⟶
x0
∈
int
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
ordinal_ordsucc_SNo_eq
ordinal_ordsucc_SNo_eq
:
∀ x0 .
ordinal
x0
⟶
ordsucc
x0
=
add_SNo
1
x0
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
int_SNo
int_SNo
:
∀ x0 .
x0
∈
int
⟶
SNo
x0
Known
SNo_1
SNo_1
:
SNo
1
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNoLt_0_1
SNoLt_0_1
:
SNoLt
0
1
Known
inj_linv
inj_linv
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
=
x1
x3
⟶
x2
=
x3
)
⟶
∀ x2 .
x2
∈
x0
⟶
inv
x0
x1
(
x1
x2
)
=
x2
Known
SNoLeE
SNoLeE
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
x1
⟶
or
(
SNoLt
x0
x1
)
(
x0
=
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
neq_ordsucc_0
neq_ordsucc_0
:
∀ x0 .
ordsucc
x0
=
0
⟶
∀ x1 : ο .
x1
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
ordinal_ordsucc
ordinal_ordsucc
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
ordsucc
x0
)
Known
nat_1
nat_1
:
nat_p
1
Known
add_SNo_Lt2_cancel
add_SNo_Lt2_cancel
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
⟶
SNoLt
x1
x2
Known
add_SNo_minus_SNo_rinv
add_SNo_minus_SNo_rinv
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
(
minus_SNo
x0
)
=
0
Known
surj_rinv
surj_rinv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
∀ x3 .
x3
∈
x1
⟶
and
(
inv
x0
x2
x3
∈
x0
)
(
x2
(
inv
x0
x2
x3
)
=
x3
)
Known
minus_SNo_Lt_contra3
minus_SNo_Lt_contra3
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
(
minus_SNo
x0
)
(
minus_SNo
x1
)
⟶
SNoLt
x1
x0
Known
add_SNo_cancel_L
add_SNo_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x0
x2
⟶
x1
=
x2
Known
int_add_SNo
int_add_SNo
:
∀ x0 .
x0
∈
int
⟶
∀ x1 .
x1
∈
int
⟶
add_SNo
x0
x1
∈
int
Known
bij_inv
bij_inv
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
bij
x1
x0
(
inv
x0
x2
)
Known
fd494..
MetaAdjunctionI
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 :
ι →
ι →
ι → ο
.
∀ x6 :
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 :
ι → ι
.
∀ x9 :
ι →
ι →
ι → ι
.
∀ x10 :
ι → ι
.
∀ x11 :
ι →
ι →
ι → ι
.
∀ x12 x13 :
ι → ι
.
(
∀ x14 .
x0
x14
⟶
x7
(
x8
x14
)
(
x8
(
x10
(
x8
x14
)
)
)
(
x8
x14
)
(
x13
(
x8
x14
)
)
(
x9
x14
(
x10
(
x8
x14
)
)
(
x12
x14
)
)
=
x6
(
x8
x14
)
)
⟶
(
∀ x14 .
x4
x14
⟶
x3
(
x10
x14
)
(
x10
(
x8
(
x10
x14
)
)
)
(
x10
x14
)
(
x11
(
x8
(
x10
x14
)
)
x14
(
x13
x14
)
)
(
x12
(
x10
x14
)
)
=
x2
(
x10
x14
)
)
⟶
MetaAdjunction
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
Known
add_SNo_minus_R2'
add_SNo_minus_R2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
add_SNo
x0
(
minus_SNo
x1
)
)
x1
=
x0
Known
int_minus_SNo
int_minus_SNo
:
∀ x0 .
x0
∈
int
⟶
minus_SNo
x0
∈
int
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
Subq_omega_int
Subq_omega_int
:
omega
⊆
int
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
unpack_u_i_eq
unpack_u_i_eq
:
∀ x0 :
ι →
(
ι → ι
)
→ ι
.
∀ x1 .
∀ x2 :
ι → ι
.
(
∀ x3 :
ι → ι
.
(
∀ x4 .
x4
∈
x1
⟶
x2
x4
=
x3
x4
)
⟶
x0
x1
x3
=
x0
x1
x2
)
⟶
unpack_u_i
(
pack_u
x1
x2
)
x0
=
x0
x1
x2
Known
prop_ext_2
prop_ext_2
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
x0
=
x1
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
tuple_2_inj
tuple_2_inj
:
∀ x0 x1 x2 x3 .
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x0
x1
)
=
lam
2
(
λ x5 .
If_i
(
x5
=
0
)
x2
x3
)
⟶
and
(
x0
=
x2
)
(
x1
=
x3
)
Known
add_SNo_cancel_R
add_SNo_cancel_R
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x2
x1
⟶
x0
=
x2
Theorem
e5024..
:
MetaAdjunction_strict
(
λ x0 .
True
)
HomSet
lam_id
(
λ x0 x1 x2 .
lam_comp
x0
)
Permutation
UnaryFuncHom
struct_id
struct_comp
24e11..
f471c..
(
λ x0 .
ap
x0
0
)
(
λ x0 x1 x2 .
x2
)
139e8..
580fd..
(proof)
Theorem
a69df..
MetaCat_struct_u_bij_left_adjoint_forgetful
:
∀ x0 : ο .
(
∀ x1 :
ι → ι
.
(
∀ x2 : ο .
(
∀ x3 :
ι →
ι →
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 :
ι → ι
.
(
∀ x6 : ο .
(
∀ x7 :
ι → ι
.
MetaAdjunction_strict
(
λ x8 .
True
)
HomSet
lam_id
(
λ x8 x9 x10 .
lam_comp
x8
)
Permutation
UnaryFuncHom
struct_id
struct_comp
x1
x3
(
λ x8 .
ap
x8
0
)
(
λ x8 x9 x10 .
x10
)
x5
x7
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)