Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGh2..
/
79440..
PUZwo..
/
eb297..
vout
PrGh2..
/
0f119..
0.32 bars
TMa8Q..
/
83e28..
ownership of
b0aad..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYSR..
/
6a1d5..
ownership of
70eb6..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMF3Y..
/
3ef01..
ownership of
ed2b0..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMSRG..
/
40f1f..
ownership of
9a59e..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbNn..
/
7f1be..
ownership of
1abd1..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdC6..
/
6e3fe..
ownership of
1c512..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLkb..
/
357a3..
ownership of
d2ca5..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMXoD..
/
c1060..
ownership of
340ba..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYxq..
/
6615d..
ownership of
4e78a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMS9k..
/
2dbc9..
ownership of
ce8d4..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGh6..
/
caa6d..
ownership of
9b6ae..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLmt..
/
f4810..
ownership of
c883c..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMdLc..
/
b2b1f..
ownership of
03855..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMGwv..
/
d0108..
ownership of
a1e51..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMNGw..
/
2df2d..
ownership of
466a7..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQmk..
/
65c1e..
ownership of
20c13..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMaJz..
/
05f21..
ownership of
ed80d..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZqb..
/
0be39..
ownership of
23000..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMFbL..
/
5a1d4..
ownership of
71f1f..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYMt..
/
b3323..
ownership of
ebf9a..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMF3P..
/
18438..
ownership of
434dd..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbyC..
/
f8922..
ownership of
6fb40..
as prop with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZHk..
/
6a645..
ownership of
b2f9d..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMPMc..
/
eb270..
ownership of
23398..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMHrf..
/
e69a4..
ownership of
45555..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMa8v..
/
a41cb..
ownership of
6b951..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbE2..
/
9d506..
ownership of
06299..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMWK8..
/
3b04e..
ownership of
a2ad1..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZq1..
/
d15d6..
ownership of
39fb2..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMctq..
/
a49f9..
ownership of
c0b41..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZas..
/
21192..
ownership of
86c86..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMZL4..
/
bd351..
ownership of
aa77e..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQmP..
/
0f3be..
ownership of
bfc97..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMYcC..
/
d50da..
ownership of
1d8fd..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TML9r..
/
2873c..
ownership of
dfe3b..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMMf3..
/
38695..
ownership of
7f834..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMcF8..
/
7cbe9..
ownership of
1c082..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMLdy..
/
28c9c..
ownership of
57caf..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMbqQ..
/
fb51e..
ownership of
067f6..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
TMQnV..
/
88420..
ownership of
e5419..
as obj with payaddr
PrCx1..
rights free controlledby
PrCx1..
upto 0
PUh86..
/
b0807..
doc published by
PrCx1..
Definition
MetaFunctor_prop1
idT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 .
x0
x4
⟶
x1
x4
x4
(
x2
x4
)
Definition
MetaFunctor_prop2
compT
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x1
x4
x5
x7
⟶
x1
x5
x6
x8
⟶
x1
x4
x6
(
x3
x4
x5
x6
x8
x7
)
Definition
MetaCat_IdR_p
idL
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x4
x5
x6
(
x2
x4
)
=
x6
Definition
MetaCat_IdL_p
idR
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 .
x0
x4
⟶
x0
x5
⟶
x1
x4
x5
x6
⟶
x3
x4
x5
x5
(
x2
x5
)
x6
=
x6
Definition
MetaCat_Comp_assoc_p
compAssoc
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 .
x0
x4
⟶
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x1
x4
x5
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x3
x4
x5
x7
(
x3
x5
x6
x7
x10
x9
)
x8
=
x3
x4
x6
x7
x10
(
x3
x4
x5
x6
x9
x8
)
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaCat
MetaCat
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaFunctor_prop1
x0
x1
x2
x3
)
(
MetaFunctor_prop2
x0
x1
x2
x3
)
)
(
and
(
MetaCat_IdR_p
x0
x1
x2
x3
)
(
MetaCat_IdL_p
x0
x1
x2
x3
)
)
)
(
MetaCat_Comp_assoc_p
x0
x1
x2
x3
)
Known
7da4b..
MetaCat_E
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 : ο .
(
MetaFunctor_prop1
x0
x1
x2
x3
⟶
MetaFunctor_prop2
x0
x1
x2
x3
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x5
x6
x7
(
x2
x5
)
=
x7
)
⟶
(
∀ x5 x6 x7 .
x0
x5
⟶
x0
x6
⟶
x1
x5
x6
x7
⟶
x3
x5
x6
x6
(
x2
x6
)
x7
=
x7
)
⟶
(
∀ x5 x6 x7 x8 x9 x10 x11 .
x0
x5
⟶
x0
x6
⟶
x0
x7
⟶
x0
x8
⟶
x1
x5
x6
x9
⟶
x1
x6
x7
x10
⟶
x1
x7
x8
x11
⟶
x3
x5
x6
x8
(
x3
x6
x7
x8
x11
x10
)
x9
=
x3
x5
x7
x8
x11
(
x3
x5
x6
x7
x10
x9
)
)
⟶
x4
)
⟶
x4
Known
6f34f..
MetaCatOp
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
MetaCat
x0
(
λ x4 x5 .
x1
x5
x4
)
x2
(
λ x4 x5 x6 x7 x8 .
x3
x6
x5
x4
x8
x7
)
Definition
MetaCat_monic_p
monic
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 .
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
∀ x7 .
x0
x7
⟶
∀ x8 x9 .
x1
x7
x4
x8
⟶
x1
x7
x4
x9
⟶
x3
x7
x4
x5
x6
x8
=
x3
x7
x4
x5
x6
x9
⟶
x8
=
x9
)
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Definition
MetaCat_product_p
product_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x10
x4
x11
⟶
x1
x10
x5
x12
⟶
and
(
and
(
and
(
x1
x10
x6
(
x9
x10
x11
x12
)
)
(
x3
x10
x6
x4
x7
(
x9
x10
x11
x12
)
=
x11
)
)
(
x3
x10
x6
x5
x8
(
x9
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x10
x6
x13
⟶
x3
x10
x6
x4
x7
x13
=
x11
⟶
x3
x10
x6
x5
x8
x13
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_product_constr_p
product_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_product_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_coproduct_p
coproduct_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
∀ x10 .
x0
x10
⟶
∀ x11 x12 .
x1
x4
x10
x11
⟶
x1
x5
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x5
x6
x10
(
x9
x10
x11
x12
)
x8
=
x12
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x5
x6
x10
x13
x8
=
x12
⟶
x13
=
x9
x10
x11
x12
)
)
Definition
MetaCat_coproduct_constr_p
coproduct_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 :
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 .
x0
x8
⟶
x0
x9
⟶
MetaCat_coproduct_p
x0
x1
x2
x3
x8
x9
(
x4
x8
x9
)
(
x5
x8
x9
)
(
x6
x8
x9
)
(
x7
x8
x9
)
Definition
MetaCat_equalizer_p
equalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x8
x4
x9
)
)
(
x3
x8
x4
x5
x6
x9
=
x3
x8
x4
x5
x7
x9
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x11
x4
x12
⟶
x3
x11
x4
x5
x6
x12
=
x3
x11
x4
x5
x7
x12
⟶
and
(
and
(
x1
x11
x8
(
x10
x11
x12
)
)
(
x3
x11
x8
x4
x9
(
x10
x11
x12
)
=
x12
)
)
(
∀ x13 .
x1
x11
x8
x13
⟶
x3
x11
x8
x4
x9
x13
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_equalizer_struct_p
equalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_equalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_coequalizer_p
coequalizer_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 .
λ x10 :
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x1
x4
x5
x6
)
)
(
x1
x4
x5
x7
)
)
(
x0
x8
)
)
(
x1
x5
x8
x9
)
)
(
x3
x4
x5
x8
x9
x6
=
x3
x4
x5
x8
x9
x7
)
)
(
∀ x11 .
x0
x11
⟶
∀ x12 .
x1
x5
x11
x12
⟶
x3
x4
x5
x11
x12
x6
=
x3
x4
x5
x11
x12
x7
⟶
and
(
and
(
x1
x8
x11
(
x10
x11
x12
)
)
(
x3
x5
x8
x11
(
x10
x11
x12
)
x9
=
x12
)
)
(
∀ x13 .
x1
x8
x11
x13
⟶
x3
x5
x8
x11
x13
x9
=
x12
⟶
x13
=
x10
x11
x12
)
)
Definition
MetaCat_coequalizer_struct_p
coequalizer_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 :
ι →
ι →
ι →
ι → ι
.
λ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 x8 .
x0
x7
⟶
x0
x8
⟶
∀ x9 x10 .
x1
x7
x8
x9
⟶
x1
x7
x8
x10
⟶
MetaCat_coequalizer_p
x0
x1
x2
x3
x7
x8
x9
x10
(
x4
x7
x8
x9
x10
)
(
x5
x7
x8
x9
x10
)
(
x6
x7
x8
x9
x10
)
Definition
MetaCat_pullback_p
pullback_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x5
x6
x8
)
)
(
x0
x9
)
)
(
x1
x9
x4
x10
)
)
(
x1
x9
x5
x11
)
)
(
x3
x9
x4
x6
x7
x10
=
x3
x9
x5
x6
x8
x11
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x13
x4
x14
⟶
∀ x15 .
x1
x13
x5
x15
⟶
x3
x13
x4
x6
x7
x14
=
x3
x13
x5
x6
x8
x15
⟶
and
(
and
(
and
(
x1
x13
x9
(
x12
x13
x14
x15
)
)
(
x3
x13
x9
x4
x10
(
x12
x13
x14
x15
)
=
x14
)
)
(
x3
x13
x9
x5
x11
(
x12
x13
x14
x15
)
=
x15
)
)
(
∀ x16 .
x1
x13
x9
x16
⟶
x3
x13
x9
x4
x10
x16
=
x14
⟶
x3
x13
x9
x5
x11
x16
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pullback_struct_p
pullback_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x8
x10
x11
⟶
x1
x9
x10
x12
⟶
MetaCat_pullback_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_pushout_p
pushout_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 x5 x6 x7 x8 x9 x10 x11 .
λ x12 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
x0
x4
)
(
x0
x5
)
)
(
x0
x6
)
)
(
x1
x6
x4
x7
)
)
(
x1
x6
x5
x8
)
)
(
x0
x9
)
)
(
x1
x4
x9
x10
)
)
(
x1
x5
x9
x11
)
)
(
x3
x6
x4
x9
x10
x7
=
x3
x6
x5
x9
x11
x8
)
)
(
∀ x13 .
x0
x13
⟶
∀ x14 .
x1
x4
x13
x14
⟶
∀ x15 .
x1
x5
x13
x15
⟶
x3
x6
x4
x13
x14
x7
=
x3
x6
x5
x13
x15
x8
⟶
and
(
and
(
and
(
x1
x9
x13
(
x12
x13
x14
x15
)
)
(
x3
x4
x9
x13
(
x12
x13
x14
x15
)
x10
=
x14
)
)
(
x3
x5
x9
x13
(
x12
x13
x14
x15
)
x11
=
x15
)
)
(
∀ x16 .
x1
x9
x13
x16
⟶
x3
x4
x9
x13
x16
x10
=
x14
⟶
x3
x5
x9
x13
x16
x11
=
x15
⟶
x16
=
x12
x13
x14
x15
)
)
Definition
MetaCat_pushout_constr_p
pushout_constr_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
∀ x8 x9 x10 .
x0
x8
⟶
x0
x9
⟶
x0
x10
⟶
∀ x11 x12 .
x1
x10
x8
x11
⟶
x1
x10
x9
x12
⟶
MetaCat_pushout_p
x0
x1
x2
x3
x8
x9
x10
x11
x12
(
x4
x8
x9
x10
x11
x12
)
(
x5
x8
x9
x10
x11
x12
)
(
x6
x8
x9
x10
x11
x12
)
(
x7
x8
x9
x10
x11
x12
)
Definition
MetaCat_subobject_classifier_p
subobject_classifier_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 .
λ x8 :
ι →
ι →
ι → ι
.
λ x9 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
∀ x10 x11 x12 .
MetaCat_monic_p
x0
x1
x2
x3
x10
x11
x12
⟶
and
(
x1
x11
x6
(
x8
x10
x11
x12
)
)
(
MetaCat_pullback_p
x0
x1
x2
x3
x4
x11
x6
x7
(
x8
x10
x11
x12
)
x10
(
x5
x10
)
x12
(
x9
x10
x11
x12
)
)
)
Known
41253..
and8I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
Theorem
434dd..
equalizer_coequalizer_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_equalizer_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_coequalizer_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
...
Theorem
71f1f..
equalizer_coequalizer_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_coequalizer_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
...
Theorem
ed80d..
coequalizer_equalizer_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 .
∀ x10 :
ι →
ι → ι
.
MetaCat_coequalizer_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
⟶
MetaCat_equalizer_p
x0
(
λ x11 x12 .
x1
x12
x11
)
x2
(
λ x11 x12 x13 x14 x15 .
x3
x13
x12
x11
x15
x14
)
x5
x4
x6
x7
x8
x9
x10
...
Theorem
466a7..
coequalizer_equalizer_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
MetaCat_equalizer_struct_p
x0
(
λ x7 x8 .
x1
x8
x7
)
x2
(
λ x7 x8 x9 x10 x11 .
x3
x9
x8
x7
x11
x10
)
(
λ x7 x8 .
x4
x8
x7
)
(
λ x7 x8 .
x5
x8
x7
)
(
λ x7 x8 .
x6
x8
x7
)
...
Theorem
03855..
pullback_pushout_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pullback_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pushout_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
...
Theorem
9b6ae..
pullback_pushout_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pushout_constr_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
...
Theorem
4e78a..
pushout_pullback_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x4 x5 x6 x7 x8 x9 x10 x11 .
∀ x12 :
ι →
ι →
ι → ι
.
MetaCat_pushout_p
x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
⟶
MetaCat_pullback_p
x0
(
λ x13 x14 .
x1
x14
x13
)
x2
(
λ x13 x14 x15 x16 x17 .
x3
x15
x14
x13
x17
x16
)
x4
x5
x6
x7
x8
x9
x10
x11
x12
...
Theorem
d2ca5..
pushout_pullback_constr_Op
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 x6 :
ι →
ι →
ι →
ι →
ι → ι
.
∀ x7 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
x0
x1
x2
x3
x4
x5
x6
x7
⟶
MetaCat_pullback_struct_p
x0
(
λ x8 x9 .
x1
x9
x8
)
x2
(
λ x8 x9 x10 x11 x12 .
x3
x10
x9
x8
x12
x11
)
x4
x5
x6
x7
...
Known
19e22..
and10I
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
x5
⟶
x6
⟶
x7
⟶
x8
⟶
x9
⟶
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
)
x5
)
x6
)
x7
)
x8
)
x9
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Theorem
1abd1..
product_equalizer_pullback_constr
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
∀ x4 x5 :
ι →
ι →
ι →
ι → ι
.
∀ x6 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x4
x5
x6
⟶
∀ x7 x8 x9 :
ι →
ι → ι
.
∀ x10 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x7
x8
x9
x10
⟶
MetaCat_pullback_struct_p
x0
x1
x2
x3
(
λ x11 x12 x13 x14 x15 .
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x11
(
x8
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 .
x3
(
x4
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
(
x7
x11
x12
)
x12
(
x9
x11
x12
)
(
x5
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
)
)
(
λ x11 x12 x13 x14 x15 x16 x17 x18 .
x6
(
x7
x11
x12
)
x13
(
x3
(
x7
x11
x12
)
x11
x13
x14
(
x8
x11
x12
)
)
(
x3
(
x7
x11
x12
)
x12
x13
x15
(
x9
x11
x12
)
)
x16
(
x10
x11
x12
x16
x17
x18
)
)
...
Theorem
ed2b0..
product_equalizer_pullback_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∃ x4 x6 :
ι →
ι →
ι →
ι → ι
.
∃ x8 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_equalizer_struct_p
x0
x1
x2
x3
x4
x6
x8
)
⟶
(
∃ x4 x6 x8 :
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_product_constr_p
x0
x1
x2
x3
x4
x6
x8
x10
)
⟶
∃ x4 x6 x8 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pullback_struct_p
x0
x1
x2
x3
x4
x6
x8
x10
...
Theorem
b0aad..
coproduct_coequalizer_pushout_constr_ex
:
∀ x0 :
ι → ο
.
∀ x1 :
ι →
ι →
ι → ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat
x0
x1
x2
x3
⟶
(
∃ x4 x6 :
ι →
ι →
ι →
ι → ι
.
∃ x8 :
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coequalizer_struct_p
x0
x1
x2
x3
x4
x6
x8
)
⟶
(
∃ x4 x6 x8 :
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_coproduct_constr_p
x0
x1
x2
x3
x4
x6
x8
x10
)
⟶
∃ x4 x6 x8 :
ι →
ι →
ι →
ι →
ι → ι
.
∃ x10 :
ι →
ι →
ι →
ι →
ι →
ι →
ι →
ι → ι
.
MetaCat_pushout_constr_p
x0
x1
x2
x3
x4
x6
x8
x10
...