Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrRL5..
/
4a8bb..
PUL5r..
/
8a7e2..
vout
PrRL5..
/
bd745..
24.97 bars
TMPM3..
/
0c52f..
ownership of
78526..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
TMLgy..
/
6b839..
ownership of
42138..
as prop with payaddr
PrQUS..
rights free controlledby
PrQUS..
upto 0
PUedh..
/
208b6..
doc published by
PrQUS..
Param
SNo
SNo
:
ι
→
ο
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
recip_SNo_pos
recip_SNo_pos
:
ι
→
ι
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Param
ordsucc
ordsucc
:
ι
→
ι
Param
SNoS_
SNoS_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Known
SNoLev_ind
SNoLev_ind
:
∀ x0 :
ι → ο
.
(
∀ x1 .
SNo
x1
⟶
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x1
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
SNo
x1
⟶
x0
x1
Param
SNoCut
SNoCut
:
ι
→
ι
→
ι
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Param
omega
omega
:
ι
Param
ap
ap
:
ι
→
ι
→
ι
Param
SNo_recipaux
SNo_recipaux
:
ι
→
(
ι
→
ι
) →
ι
→
ι
Known
recip_SNo_pos_eq
recip_SNo_pos_eq
:
∀ x0 .
SNo
x0
⟶
recip_SNo_pos
x0
=
SNoCut
(
famunion
omega
(
λ x2 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x2
)
0
)
)
(
famunion
omega
(
λ x2 .
ap
(
SNo_recipaux
x0
recip_SNo_pos
x2
)
1
)
)
Definition
SNoCutP
SNoCutP
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
(
∀ x2 .
x2
∈
x1
⟶
SNo
x2
)
)
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x1
⟶
SNoLt
x2
x3
)
Known
SNo_recipaux_lem2
SNo_recipaux_lem2
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLt
0
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
mul_SNo
x2
(
x1
x2
)
=
1
)
)
⟶
SNoCutP
(
famunion
omega
(
λ x2 .
ap
(
SNo_recipaux
x0
x1
x2
)
0
)
)
(
famunion
omega
(
λ x2 .
ap
(
SNo_recipaux
x0
x1
x2
)
1
)
)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
SNoEq_
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
SNoCutP_SNoCut_impred
SNoCutP_SNoCut_impred
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 : ο .
(
SNo
(
SNoCut
x0
x1
)
⟶
SNoLev
(
SNoCut
x0
x1
)
∈
ordsucc
(
binunion
(
famunion
x0
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
(
famunion
x1
(
λ x3 .
ordsucc
(
SNoLev
x3
)
)
)
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
SNoLt
x3
(
SNoCut
x0
x1
)
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
SNoLt
(
SNoCut
x0
x1
)
x3
)
⟶
(
∀ x3 .
SNo
x3
⟶
(
∀ x4 .
x4
∈
x0
⟶
SNoLt
x4
x3
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
SNoLt
x3
x4
)
⟶
and
(
SNoLev
(
SNoCut
x0
x1
)
⊆
SNoLev
x3
)
(
SNoEq_
(
SNoLev
(
SNoCut
x0
x1
)
)
(
SNoCut
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
SNoLt_trichotomy_or_impred
SNoLt_trichotomy_or_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 : ο .
(
SNoLt
x0
x1
⟶
x2
)
⟶
(
x0
=
x1
⟶
x2
)
⟶
(
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNo_1
SNo_1
:
SNo
1
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Param
minus_SNo
minus_SNo
:
ι
→
ι
Param
SNoR
SNoR
:
ι
→
ι
Param
SNoL
SNoL
:
ι
→
ι
Known
mul_SNo_SNoR_interpolate_impred
mul_SNo_SNoR_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoR
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
⟶
x3
)
⟶
x3
Known
SNoR_I
SNoR_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x1
∈
SNoR
x0
Param
ordinal
ordinal
:
ι
→
ο
Known
ordinal_SNoLev
ordinal_SNoLev
:
∀ x0 .
ordinal
x0
⟶
SNoLev
x0
=
x0
Known
ordinal_1
ordinal_1
:
ordinal
1
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
ordinal_In_Or_Subq
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
x0
∈
x1
)
(
x1
⊆
x0
)
Known
SNoLev_ordinal
SNoLev_ordinal
:
∀ x0 .
SNo
x0
⟶
ordinal
(
SNoLev
x0
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
pos_low_eq_one
pos_low_eq_one
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
SNoLev
x0
⊆
1
⟶
x0
=
1
Known
mul_SNo_pos_pos
mul_SNo_pos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
SNoLt
0
(
mul_SNo
x0
x1
)
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Known
SNoR_SNoCutP_ex
SNoR_SNoCutP_ex
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 .
x2
∈
SNoR
(
SNoCut
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
SNoLe
x4
x2
)
⟶
x3
)
⟶
x3
Known
SNoS_I2
SNoS_I2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
∈
SNoLev
x1
⟶
x0
∈
SNoS_
(
SNoLev
x1
)
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Param
nat_p
nat_p
:
ι
→
ο
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
SNo_recipauxset
SNo_recipauxset
:
ι
→
ι
→
ι
→
(
ι
→
ι
) →
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
SNoL_pos
SNoL_pos
:=
λ x0 .
Sep
(
SNoL
x0
)
(
SNoLt
0
)
Known
SNo_recipaux_S
SNo_recipaux_S
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
nat_p
x2
⟶
SNo_recipaux
x0
x1
(
ordsucc
x2
)
=
lam
2
(
λ x4 .
If_i
(
x4
=
0
)
(
binunion
(
binunion
(
ap
(
SNo_recipaux
x0
x1
x2
)
0
)
(
SNo_recipauxset
(
ap
(
SNo_recipaux
x0
x1
x2
)
0
)
x0
(
SNoR
x0
)
x1
)
)
(
SNo_recipauxset
(
ap
(
SNo_recipaux
x0
x1
x2
)
1
)
x0
(
SNoL_pos
x0
)
x1
)
)
(
binunion
(
binunion
(
ap
(
SNo_recipaux
x0
x1
x2
)
1
)
(
SNo_recipauxset
(
ap
(
SNo_recipaux
x0
x1
x2
)
0
)
x0
(
SNoL_pos
x0
)
x1
)
)
(
SNo_recipauxset
(
ap
(
SNo_recipaux
x0
x1
x2
)
1
)
x0
(
SNoR
x0
)
x1
)
)
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
tuple_2_0_eq
tuple_2_0_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
0
=
x0
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SNo_recipauxset_I
SNo_recipauxset_I
:
∀ x0 x1 x2 .
∀ x3 :
ι → ι
.
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x2
⟶
mul_SNo
(
add_SNo
1
(
mul_SNo
(
add_SNo
x5
(
minus_SNo
x1
)
)
x4
)
)
(
x3
x5
)
∈
SNo_recipauxset
x0
x1
x2
x3
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
nonneg_mul_SNo_Le
nonneg_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
0
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
add_SNo_minus_Le2b
add_SNo_minus_Le2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
SNo_0
SNo_0
:
SNo
0
Known
add_SNo_0L
add_SNo_0L
:
∀ x0 .
SNo
x0
⟶
add_SNo
0
x0
=
x0
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLtLe_tra
SNoLtLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLt
x0
x2
Known
SNo_mul_SNo
SNo_mul_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
mul_SNo
x0
x1
)
Known
SNo_recipaux_lem1
SNo_recipaux_lem1
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
∀ x1 :
ι → ι
.
(
∀ x2 .
x2
∈
SNoS_
(
SNoLev
x0
)
⟶
SNoLt
0
x2
⟶
and
(
SNo
(
x1
x2
)
)
(
mul_SNo
x2
(
x1
x2
)
=
1
)
)
⟶
∀ x2 .
nat_p
x2
⟶
and
(
∀ x3 .
x3
∈
ap
(
SNo_recipaux
x0
x1
x2
)
0
⟶
and
(
SNo
x3
)
(
SNoLt
(
mul_SNo
x0
x3
)
1
)
)
(
∀ x3 .
x3
∈
ap
(
SNo_recipaux
x0
x1
x2
)
1
⟶
and
(
SNo
x3
)
(
SNoLt
1
(
mul_SNo
x0
x3
)
)
)
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
add_SNo_Le1
add_SNo_Le1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x2
x1
)
Known
mul_SNo_nonpos_neg
mul_SNo_nonpos_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
0
⟶
SNoLt
x1
0
⟶
SNoLe
0
(
mul_SNo
x0
x1
)
Known
add_SNo_minus_Lt1b
add_SNo_minus_Lt1b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
(
add_SNo
x2
x1
)
⟶
SNoLt
(
add_SNo
x0
(
minus_SNo
x1
)
)
x2
Known
mul_SNo_distrL
mul_SNo_distrL
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
add_SNo_com_3b_1_2
add_SNo_com_3b_1_2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
add_SNo
x0
x2
)
x1
Known
add_SNo_minus_Le2
add_SNo_minus_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
⟶
SNoLe
(
add_SNo
x2
x1
)
x0
Known
mul_SNo_minus_distrR
mul_minus_SNo_distrR
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
(
minus_SNo
x1
)
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
SNoL_SNoCutP_ex
SNoL_SNoCutP_ex
:
∀ x0 x1 .
SNoCutP
x0
x1
⟶
∀ x2 .
x2
∈
SNoL
(
SNoCut
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x0
)
(
SNoLe
x2
x4
)
⟶
x3
)
⟶
x3
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
nonpos_mul_SNo_Le
nonpos_mul_SNo_Le
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNoLe
x0
0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x2
x1
⟶
SNoLe
(
mul_SNo
x0
x1
)
(
mul_SNo
x0
x2
)
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
SNoLt_minus_pos
SNoLt_minus_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
x0
x1
⟶
SNoLt
0
(
add_SNo
x1
(
minus_SNo
x0
)
)
Known
mul_SNo_com
mul_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
x0
x1
=
mul_SNo
x1
x0
Known
mul_SNo_assoc
mul_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
x0
(
mul_SNo
x1
x2
)
=
mul_SNo
(
mul_SNo
x0
x1
)
x2
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Known
minus_add_SNo_distr
minus_add_SNo_distr
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
minus_SNo
(
add_SNo
x0
x1
)
=
add_SNo
(
minus_SNo
x0
)
(
minus_SNo
x1
)
Known
add_SNo_rotate_3_1
add_SNo_rotate_3_1
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
x2
(
add_SNo
x0
x1
)
Known
add_SNo_minus_SNo_prop2
add_SNo_minus_SNo_prop2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
(
add_SNo
(
minus_SNo
x0
)
x1
)
=
x1
Known
mul_SNo_minus_distrL
mul_SNo_minus_distrL
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
mul_SNo
(
minus_SNo
x0
)
x1
=
minus_SNo
(
mul_SNo
x0
x1
)
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
mul_SNo_SNoL_interpolate_impred
mul_SNo_SNoL_interpolate_impred
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
∀ x2 .
x2
∈
SNoL
(
mul_SNo
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoL
x0
⟶
∀ x5 .
x5
∈
SNoL
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
(
∀ x4 .
x4
∈
SNoR
x0
⟶
∀ x5 .
x5
∈
SNoR
x1
⟶
SNoLe
(
add_SNo
x2
(
mul_SNo
x4
x5
)
)
(
add_SNo
(
mul_SNo
x4
x1
)
(
mul_SNo
x0
x5
)
)
⟶
x3
)
⟶
x3
Known
SNoL_I
SNoL_I
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x1
∈
SNoL
x0
Known
tuple_2_1_eq
tuple_2_1_eq
:
∀ x0 x1 .
ap
(
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
x0
x1
)
)
1
=
x1
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
mul_SNo_nonpos_pos
mul_SNo_nonpos_pos
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLe
x0
0
⟶
SNoLt
0
x1
⟶
SNoLe
(
mul_SNo
x0
x1
)
0
Known
add_SNo_minus_Lt2b
add_SNo_minus_Lt2b
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
(
add_SNo
x2
x1
)
x0
⟶
SNoLt
x2
(
add_SNo
x0
(
minus_SNo
x1
)
)
Known
mul_SNo_pos_neg
mul_SNo_pos_neg
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLt
0
x0
⟶
SNoLt
x1
0
⟶
SNoLt
(
mul_SNo
x0
x1
)
0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Param
Sing
Sing
:
ι
→
ι
Known
SNo_recipaux_0
SNo_recipaux_0
:
∀ x0 .
∀ x1 :
ι → ι
.
SNo_recipaux
x0
x1
0
=
lam
2
(
λ x3 .
If_i
(
x3
=
0
)
(
Sing
0
)
0
)
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
recip_SNo_pos_prop1
recip_SNo_pos_prop1
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
and
(
SNo
(
recip_SNo_pos
x0
)
)
(
mul_SNo
x0
(
recip_SNo_pos
x0
)
=
1
)
(proof)