Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr8YY..
/
96e83..
PUbpy..
/
38909..
vout
Pr8YY..
/
20b07..
0.10 bars
TMdfh..
/
949e7..
ownership of
6c42e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZGu..
/
41a9d..
ownership of
64702..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUfC..
/
3e177..
ownership of
15875..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZbs..
/
dbb58..
ownership of
921e3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGVk..
/
d65dd..
ownership of
6ca2d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRpd..
/
954fe..
ownership of
3b1f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHsu..
/
d42bb..
ownership of
04334..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHoS..
/
95e17..
ownership of
1eaec..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdNN..
/
09fbd..
ownership of
7131e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXYh..
/
78dd2..
ownership of
da373..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMapk..
/
1915d..
ownership of
45aeb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMW2r..
/
2060a..
ownership of
79ad9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS2C..
/
cb2ea..
ownership of
cfa1e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVDX..
/
acdf2..
ownership of
ecb16..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTmU..
/
3b3a1..
ownership of
034ed..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUmU..
/
d7948..
ownership of
5d4b3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZSp..
/
a1a45..
ownership of
1c6ac..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMciB..
/
51888..
ownership of
b7358..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMX8c..
/
7b83f..
ownership of
12a4f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSBM..
/
6d1fd..
ownership of
a8208..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTfH..
/
7edbd..
ownership of
608fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPUZ..
/
24093..
ownership of
3c776..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZPD..
/
34b9b..
ownership of
2ea16..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdjN..
/
8355a..
ownership of
15d1b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWu6..
/
95085..
ownership of
d344e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKDn..
/
b2203..
ownership of
f4d2c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMamm..
/
a46ab..
ownership of
334fc..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMbE..
/
cd0e4..
ownership of
e3fca..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHJ8..
/
10cdd..
ownership of
ed990..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVkd..
/
7fef7..
ownership of
11a28..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLNh..
/
498eb..
ownership of
ab30c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWrB..
/
c89ee..
ownership of
210d9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLSJ..
/
61b6c..
ownership of
73a44..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZi9..
/
15a74..
ownership of
6dca0..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXXK..
/
4b5c5..
ownership of
06f75..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNPw..
/
0825e..
ownership of
112be..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUeJx..
/
bce5a..
doc published by
PrCmT..
Known
df_mgm2__df_cmgm2__df_sgrp2__df_csgrp2__df_rng0__df_rnghomo__df_rngisom__df_rngc__df_rngcALTV__df_ringc__df_ringcALTV__df_dmatalt__df_scmatalt__df_linc__df_lco__df_lininds__df_lindeps__df_fdiv
:
∀ x0 : ο .
(
wceq
cmgm2
(
cab
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cplusg
)
(
cfv
(
cv
x1
)
cbs
)
ccllaw
)
)
⟶
wceq
ccmgm2
(
crab
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cplusg
)
(
cfv
(
cv
x1
)
cbs
)
ccomlaw
)
(
λ x1 .
cmgm2
)
)
⟶
wceq
csgrp2
(
crab
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cplusg
)
(
cfv
(
cv
x1
)
cbs
)
casslaw
)
(
λ x1 .
cmgm2
)
)
⟶
wceq
ccsgrp2
(
crab
(
λ x1 .
wbr
(
cfv
(
cv
x1
)
cplusg
)
(
cfv
(
cv
x1
)
cbs
)
ccomlaw
)
(
λ x1 .
csgrp2
)
)
⟶
wceq
crng
(
crab
(
λ x1 .
wa
(
wcel
(
cfv
(
cv
x1
)
cmgp
)
csgrp
)
(
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wceq
(
co
(
cv
x5
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x4
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x3
)
)
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
λ x1 .
cabl
)
)
⟶
wceq
crngh
(
cmpt2
(
λ x1 x2 .
crng
)
(
λ x1 x2 .
crng
)
(
λ x1 x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
csb
(
cfv
(
cv
x2
)
cbs
)
(
λ x4 .
crab
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wceq
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cv
x5
)
)
(
co
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cplusg
)
)
)
(
wceq
(
cfv
(
co
(
cv
x6
)
(
cv
x7
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cv
x5
)
)
(
co
(
cfv
(
cv
x6
)
(
cv
x5
)
)
(
cfv
(
cv
x7
)
(
cv
x5
)
)
(
cfv
(
cv
x2
)
cmulr
)
)
)
)
(
λ x7 .
cv
x3
)
)
(
λ x6 .
cv
x3
)
)
(
λ x5 .
co
(
cv
x4
)
(
cv
x3
)
cmap
)
)
)
)
)
⟶
wceq
crngs
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
crab
(
λ x3 .
wcel
(
ccnv
(
cv
x3
)
)
(
co
(
cv
x2
)
(
cv
x1
)
crngh
)
)
(
λ x3 .
co
(
cv
x1
)
(
cv
x2
)
crngh
)
)
)
⟶
wceq
crngc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
cestrc
)
(
cres
crngh
(
cxp
(
cin
(
cv
x1
)
crng
)
(
cin
(
cv
x1
)
crng
)
)
)
cresc
)
)
⟶
wceq
crngcALTV
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cin
(
cv
x1
)
crng
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
crngh
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x3 x4 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c2nd
)
(
cv
x4
)
crngh
)
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x3
)
c2nd
)
crngh
)
(
λ x5 x6 .
ccom
(
cv
x5
)
(
cv
x6
)
)
)
)
)
)
)
)
⟶
wceq
cringc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cfv
(
cv
x1
)
cestrc
)
(
cres
crh
(
cxp
(
cin
(
cv
x1
)
crg
)
(
cin
(
cv
x1
)
crg
)
)
)
cresc
)
)
⟶
wceq
cringcALTV
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
csb
(
cin
(
cv
x1
)
crg
)
(
λ x2 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x2
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
co
(
cv
x3
)
(
cv
x4
)
crh
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x3 x4 .
cxp
(
cv
x2
)
(
cv
x2
)
)
(
λ x3 x4 .
cv
x2
)
(
λ x3 x4 .
cmpt2
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c2nd
)
(
cv
x4
)
crh
)
(
λ x5 x6 .
co
(
cfv
(
cv
x3
)
c1st
)
(
cfv
(
cv
x3
)
c2nd
)
crh
)
(
λ x5 x6 .
ccom
(
cv
x5
)
(
cv
x6
)
)
)
)
)
)
)
)
⟶
wceq
cdmatalt
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
(
λ x3 .
co
(
cv
x3
)
(
crab
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wne
(
cv
x5
)
(
cv
x6
)
⟶
wceq
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x2
)
c0g
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cfv
(
cv
x3
)
cbs
)
)
cress
)
)
)
⟶
wceq
cscmatalt
(
cmpt2
(
λ x1 x2 .
cfn
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
csb
(
co
(
cv
x1
)
(
cv
x2
)
cmat
)
(
λ x3 .
co
(
cv
x3
)
(
crab
(
λ x4 .
wrex
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wceq
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
cif
(
wceq
(
cv
x6
)
(
cv
x7
)
)
(
cv
x5
)
(
cfv
(
cv
x2
)
c0g
)
)
)
(
λ x7 .
cv
x1
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cfv
(
cv
x2
)
cbs
)
)
(
λ x4 .
cfv
(
cv
x3
)
cbs
)
)
cress
)
)
)
⟶
wceq
clinc
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
co
(
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
cv
x3
)
cmap
)
(
λ x2 x3 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x2 x3 .
co
(
cv
x1
)
(
cmpt
(
λ x4 .
cv
x3
)
(
λ x4 .
co
(
cfv
(
cv
x4
)
(
cv
x2
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
cvsca
)
)
)
cgsu
)
)
)
⟶
wceq
clinco
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 x2 .
crab
(
λ x3 .
wrex
(
λ x4 .
wa
(
wbr
(
cv
x4
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
cfsupp
)
(
wceq
(
cv
x3
)
(
co
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
clinc
)
)
)
)
(
λ x4 .
co
(
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
cv
x2
)
cmap
)
)
(
λ x3 .
cfv
(
cv
x1
)
cbs
)
)
)
⟶
wceq
clininds
(
copab
(
λ x1 x2 .
wa
(
wcel
(
cv
x1
)
(
cpw
(
cfv
(
cv
x2
)
cbs
)
)
)
(
wral
(
λ x3 .
wa
(
wbr
(
cv
x3
)
(
cfv
(
cfv
(
cv
x2
)
csca
)
c0g
)
cfsupp
)
(
wceq
(
co
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x2
)
clinc
)
)
(
cfv
(
cv
x2
)
c0g
)
)
⟶
wral
(
λ x4 .
wceq
(
cfv
(
cv
x4
)
(
cv
x3
)
)
(
cfv
(
cfv
(
cv
x2
)
csca
)
c0g
)
)
(
λ x4 .
cv
x1
)
)
(
λ x3 .
co
(
cfv
(
cfv
(
cv
x2
)
csca
)
cbs
)
(
cv
x1
)
cmap
)
)
)
)
⟶
wceq
clindeps
(
copab
(
λ x1 x2 .
wn
(
wbr
(
cv
x1
)
(
cv
x2
)
clininds
)
)
)
⟶
wceq
cfdiv
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cres
(
co
(
cv
x1
)
(
cv
x2
)
(
cof
cdiv
)
)
(
co
(
cv
x2
)
cc0
csupp
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_mgm2
:
wceq
cmgm2
(
cab
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cplusg
)
(
cfv
(
cv
x0
)
cbs
)
ccllaw
)
)
(proof)
Theorem
df_cmgm2
:
wceq
ccmgm2
(
crab
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cplusg
)
(
cfv
(
cv
x0
)
cbs
)
ccomlaw
)
(
λ x0 .
cmgm2
)
)
(proof)
Theorem
df_sgrp2
:
wceq
csgrp2
(
crab
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cplusg
)
(
cfv
(
cv
x0
)
cbs
)
casslaw
)
(
λ x0 .
cmgm2
)
)
(proof)
Theorem
df_csgrp2
:
wceq
ccsgrp2
(
crab
(
λ x0 .
wbr
(
cfv
(
cv
x0
)
cplusg
)
(
cfv
(
cv
x0
)
cbs
)
ccomlaw
)
(
λ x0 .
csgrp2
)
)
(proof)
Theorem
df_rng0
:
wceq
crng
(
crab
(
λ x0 .
wa
(
wcel
(
cfv
(
cv
x0
)
cmgp
)
csgrp
)
(
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wceq
(
co
(
cv
x4
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x2
)
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x3
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x2
)
)
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
λ x0 .
cabl
)
)
(proof)
Theorem
df_rnghomo
:
wceq
crngh
(
cmpt2
(
λ x0 x1 .
crng
)
(
λ x0 x1 .
crng
)
(
λ x0 x1 .
csb
(
cfv
(
cv
x0
)
cbs
)
(
λ x2 .
csb
(
cfv
(
cv
x1
)
cbs
)
(
λ x3 .
crab
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
)
(
wceq
(
cfv
(
co
(
cv
x5
)
(
cv
x6
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cv
x4
)
)
(
co
(
cfv
(
cv
x5
)
(
cv
x4
)
)
(
cfv
(
cv
x6
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
(
λ x4 .
co
(
cv
x3
)
(
cv
x2
)
cmap
)
)
)
)
)
(proof)
Theorem
df_rngisom
:
wceq
crngs
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
crab
(
λ x2 .
wcel
(
ccnv
(
cv
x2
)
)
(
co
(
cv
x1
)
(
cv
x0
)
crngh
)
)
(
λ x2 .
co
(
cv
x0
)
(
cv
x1
)
crngh
)
)
)
(proof)
Theorem
df_rngc
:
wceq
crngc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
cestrc
)
(
cres
crngh
(
cxp
(
cin
(
cv
x0
)
crng
)
(
cin
(
cv
x0
)
crng
)
)
)
cresc
)
)
(proof)
Theorem
df_rngcALTV
:
wceq
crngcALTV
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cin
(
cv
x0
)
crng
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
crngh
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x3
)
crngh
)
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
crngh
)
(
λ x4 x5 .
ccom
(
cv
x4
)
(
cv
x5
)
)
)
)
)
)
)
)
(proof)
Theorem
df_ringc
:
wceq
cringc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cfv
(
cv
x0
)
cestrc
)
(
cres
crh
(
cxp
(
cin
(
cv
x0
)
crg
)
(
cin
(
cv
x0
)
crg
)
)
)
cresc
)
)
(proof)
Theorem
df_ringcALTV
:
wceq
cringcALTV
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
csb
(
cin
(
cv
x0
)
crg
)
(
λ x1 .
ctp
(
cop
(
cfv
cnx
cbs
)
(
cv
x1
)
)
(
cop
(
cfv
cnx
chom
)
(
cmpt2
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
co
(
cv
x2
)
(
cv
x3
)
crh
)
)
)
(
cop
(
cfv
cnx
cco
)
(
cmpt2
(
λ x2 x3 .
cxp
(
cv
x1
)
(
cv
x1
)
)
(
λ x2 x3 .
cv
x1
)
(
λ x2 x3 .
cmpt2
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c2nd
)
(
cv
x3
)
crh
)
(
λ x4 x5 .
co
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
crh
)
(
λ x4 x5 .
ccom
(
cv
x4
)
(
cv
x5
)
)
)
)
)
)
)
)
(proof)
Theorem
df_dmatalt
:
wceq
cdmatalt
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
(
λ x2 .
co
(
cv
x2
)
(
crab
(
λ x3 .
wral
(
λ x4 .
wral
(
λ x5 .
wne
(
cv
x4
)
(
cv
x5
)
⟶
wceq
(
co
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
λ x5 .
cv
x0
)
)
(
λ x4 .
cv
x0
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
cress
)
)
)
(proof)
Theorem
df_scmatalt
:
wceq
cscmatalt
(
cmpt2
(
λ x0 x1 .
cfn
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
csb
(
co
(
cv
x0
)
(
cv
x1
)
cmat
)
(
λ x2 .
co
(
cv
x2
)
(
crab
(
λ x3 .
wrex
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wceq
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cif
(
wceq
(
cv
x5
)
(
cv
x6
)
)
(
cv
x4
)
(
cfv
(
cv
x1
)
c0g
)
)
)
(
λ x6 .
cv
x0
)
)
(
λ x5 .
cv
x0
)
)
(
λ x4 .
cfv
(
cv
x1
)
cbs
)
)
(
λ x3 .
cfv
(
cv
x2
)
cbs
)
)
cress
)
)
)
(proof)
Theorem
df_linc
:
wceq
clinc
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
co
(
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
cv
x2
)
cmap
)
(
λ x1 x2 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x1 x2 .
co
(
cv
x0
)
(
cmpt
(
λ x3 .
cv
x2
)
(
λ x3 .
co
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cv
x3
)
(
cfv
(
cv
x0
)
cvsca
)
)
)
cgsu
)
)
)
(proof)
Theorem
df_lco
:
wceq
clinco
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cpw
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 x1 .
crab
(
λ x2 .
wrex
(
λ x3 .
wa
(
wbr
(
cv
x3
)
(
cfv
(
cfv
(
cv
x0
)
csca
)
c0g
)
cfsupp
)
(
wceq
(
cv
x2
)
(
co
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
clinc
)
)
)
)
(
λ x3 .
co
(
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
cv
x1
)
cmap
)
)
(
λ x2 .
cfv
(
cv
x0
)
cbs
)
)
)
(proof)
Theorem
df_lininds
:
wceq
clininds
(
copab
(
λ x0 x1 .
wa
(
wcel
(
cv
x0
)
(
cpw
(
cfv
(
cv
x1
)
cbs
)
)
)
(
wral
(
λ x2 .
wa
(
wbr
(
cv
x2
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
cfsupp
)
(
wceq
(
co
(
cv
x2
)
(
cv
x0
)
(
cfv
(
cv
x1
)
clinc
)
)
(
cfv
(
cv
x1
)
c0g
)
)
⟶
wral
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
(
cv
x2
)
)
(
cfv
(
cfv
(
cv
x1
)
csca
)
c0g
)
)
(
λ x3 .
cv
x0
)
)
(
λ x2 .
co
(
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
cv
x0
)
cmap
)
)
)
)
(proof)
Theorem
df_lindeps
:
wceq
clindeps
(
copab
(
λ x0 x1 .
wn
(
wbr
(
cv
x0
)
(
cv
x1
)
clininds
)
)
)
(proof)
Theorem
df_fdiv
:
wceq
cfdiv
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cres
(
co
(
cv
x0
)
(
cv
x1
)
(
cof
cdiv
)
)
(
co
(
cv
x1
)
cc0
csupp
)
)
)
(proof)