Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrP9d../fc5ca..
PUXQB../bec3a..
vout
PrP9d../23a22.. 0.20 bars
TMcss../e4cbb.. ownership of eece9.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbdz../3ce02.. ownership of 86f99.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMHiN../f1d23.. ownership of 7d132.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMXFn../41bc6.. ownership of 6745f.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMY2E../c9122.. ownership of 2f257.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcd2../3f0ca.. ownership of e3fb6.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJrv../a82ff.. ownership of 33e42.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TML6T../bf0c9.. ownership of 9fbd3.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJA2../92f60.. ownership of b8863.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMUFp../c9cd8.. ownership of 8dadc.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMMcR../58484.. ownership of 5ac29.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLdX../23b23.. ownership of a5d0a.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdvA../3c7ac.. ownership of dcba1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMcT4../de4e1.. ownership of d129d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMbwp../d4395.. ownership of 1962e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMdCP../f3f77.. ownership of a1fc1.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJbA../cd5fb.. ownership of 90e3e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLuW../08e17.. ownership of 87e4b.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMJj8../84b83.. ownership of 6435d.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
TMLgB../d2ea9.. ownership of eaa5e.. as prop with payaddr PrEBh.. rights free controlledby PrEBh.. upto 0
PUSP5../83e1e.. doc published by PrEBh..
Param pack_ppack_p : ι(ιο) → ι
Definition struct_pstruct_p := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ο . x1 (pack_p x2 x3))x1 x0
Param ordsuccordsucc : ιι
Definition TrueTrue := ∀ x0 : ο . x0x0
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Param UnaryPredHomHom_struct_p : ιιιο
Param struct_idstruct_id : ιι
Param lamSigma : ι(ιι) → ι
Param apap : ιιι
Definition lam_complam_comp := λ x0 x1 x2 . lam x0 (λ x3 . ap x1 (ap x2 x3))
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known pack_p_0_eq2pack_p_0_eq2 : ∀ x0 . ∀ x1 : ι → ο . x0 = ap (pack_p x0 x1) 0
Param PiPi : ι(ιι) → ι
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Known 55fb5..Hom_struct_p_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ο . ∀ x4 . UnaryPredHom (pack_p x0 x2) (pack_p x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0x2 x6x3 (ap x4 x6))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Known In_0_1In_0_1 : 01
Known TrueITrueI : True
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 6435d.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)x0 (pack_p 1 (λ x1 . True))MetaCat_terminal_p x0 UnaryPredHom struct_id struct_comp (pack_p 1 (λ x1 . True)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (proof)
Param omegaomega : ι
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Known and5Iand5I : ∀ x0 x1 x2 x3 x4 : ο . x0x1x2x3x4and (and (and (and x0 x1) x2) x3) x4
Param nat_pnat_p : ιο
Known nat_p_omeganat_p_omega : ∀ x0 . nat_p x0x0omega
Known nat_0nat_0 : nat_p 0
Known omega_ordsuccomega_ordsucc : ∀ x0 . x0omegaordsucc x0omega
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Known omega_nat_pomega_nat_p : ∀ x0 . x0omeganat_p x0
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Known cases_1cases_1 : ∀ x0 . x01∀ x1 : ι → ο . x1 0x1 x0
Known nat_primrec_0nat_primrec_0 : ∀ x0 . ∀ x1 : ι → ι → ι . nat_primrec x0 x1 0 = x0
Known nat_primrec_Snat_primrec_S : ∀ x0 . ∀ x1 : ι → ι → ι . ∀ x2 . nat_p x2nat_primrec x0 x1 (ordsucc x2) = x1 x2 (nat_primrec x0 x1 x2)
Known nat_indnat_ind : ∀ x0 : ι → ο . x0 0(∀ x1 . nat_p x1x0 x1x0 (ordsucc x1))∀ x1 . nat_p x1x0 x1
Theorem 90e3e.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_p x1)x0 (pack_p 1 (λ x1 . True))x0 (pack_p omega (λ x1 . True))MetaCat_nno_p x0 UnaryPredHom struct_id struct_comp (pack_p 1 (λ x1 . True)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (pack_p omega (λ x1 . True)) (lam 1 (λ x1 . 0)) (lam omega ordsucc) (λ x1 x2 x3 . lam omega (nat_primrec (ap x2 0) (λ x4 . ap x3))) (proof)
Known pack_struct_p_Ipack_struct_p_I : ∀ x0 . ∀ x1 : ι → ο . struct_p (pack_p x0 x1)
Theorem 1962e.. : MetaCat_terminal_p struct_p UnaryPredHom struct_id struct_comp (pack_p 1 (λ x0 . True)) (λ x0 . lam (ap x0 0) (λ x1 . 0)) (proof)
Theorem dcba1..MetaCat_struct_p_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p struct_p UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param unpack_p_ounpack_p_o : ι(ι(ιο) → ο) → ο
Definition PtdPredstruct_p_nonempty := λ x0 . and (struct_p x0) (unpack_p_o x0 (λ x1 . λ x2 : ι → ο . ∀ x3 : ο . (∀ x4 . and (x4x1) (x2 x4)x3)x3))
Known 93af6.. : ∀ x0 . ∀ x1 : ι → ο . (∀ x2 : ο . (∀ x3 . and (x3x0) (x1 x3)x2)x2)PtdPred (pack_p x0 x1)
Theorem 5ac29.. : MetaCat_terminal_p PtdPred UnaryPredHom struct_id struct_comp (pack_p 1 (λ x0 . True)) (λ x0 . lam (ap x0 0) (λ x1 . 0)) (proof)
Theorem b8863..MetaCat_struct_p_nonempty_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p PtdPred UnaryPredHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Param pack_rpack_r : ι(ιιο) → ι
Definition struct_rstruct_r := λ x0 . ∀ x1 : ι → ο . (∀ x2 . ∀ x3 : ι → ι → ο . x1 (pack_r x2 x3))x1 x0
Param BinRelnHomHom_struct_r : ιιιο
Known pack_r_0_eq2pack_r_0_eq2 : ∀ x0 . ∀ x1 x2 : ι → ι → ο . x2 x0 (ap (pack_r x0 x1) 0)x2 (ap (pack_r x0 x1) 0) x0
Known c84ab..Hom_struct_r_pack : ∀ x0 x1 . ∀ x2 x3 : ι → ι → ο . ∀ x4 . BinRelnHom (pack_r x0 x2) (pack_r x1 x3) x4 = and (x4setexp x1 x0) (∀ x6 . x6x0∀ x7 . x7x0x2 x6 x7x3 (ap x4 x6) (ap x4 x7))
Theorem 33e42.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)x0 (pack_r 1 (λ x1 x2 . True))MetaCat_terminal_p x0 BinRelnHom struct_id struct_comp (pack_r 1 (λ x1 x2 . True)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (proof)
Theorem 2f257.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)x0 (pack_r 1 (λ x1 x2 . True))x0 (pack_r omega (λ x1 x2 . x1 = x2))MetaCat_nno_p x0 BinRelnHom struct_id struct_comp (pack_r 1 (λ x1 x2 . True)) (λ x1 . lam (ap x1 0) (λ x2 . 0)) (pack_r omega (λ x1 x2 . x1 = x2)) (lam 1 (λ x1 . 0)) (lam omega ordsucc) (λ x1 x2 x3 . lam omega (nat_primrec (ap x2 0) (λ x4 . ap x3))) (proof)
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Definition PERstruct_r_per := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known a3466.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)PER (pack_r x0 x1)
Theorem 7d132..MetaCat_struct_r_per_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p PER BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition EquivRelnstruct_r_equivreln := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (and (∀ x3 . x3x1x2 x3 x3) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)) (∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1x2 x3 x4x2 x4 x5x2 x3 x5)))
Known 517b3.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0x1 x2 x2)(∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)(∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0x1 x2 x3x1 x3 x4x1 x2 x4)EquivReln (pack_r x0 x1)
Theorem eece9..MetaCat_struct_r_equivreln_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p EquivReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0 (proof)