Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrP9d..
/
fc5ca..
PUXQB..
/
bec3a..
vout
PrP9d..
/
23a22..
0.20 bars
TMcss..
/
e4cbb..
ownership of
eece9..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbdz..
/
3ce02..
ownership of
86f99..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMHiN..
/
f1d23..
ownership of
7d132..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMXFn..
/
41bc6..
ownership of
6745f..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMY2E..
/
c9122..
ownership of
2f257..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcd2..
/
3f0ca..
ownership of
e3fb6..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJrv..
/
a82ff..
ownership of
33e42..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TML6T..
/
bf0c9..
ownership of
9fbd3..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJA2..
/
92f60..
ownership of
b8863..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMUFp..
/
c9cd8..
ownership of
8dadc..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMMcR..
/
58484..
ownership of
5ac29..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLdX..
/
23b23..
ownership of
a5d0a..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdvA..
/
3c7ac..
ownership of
dcba1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMcT4..
/
de4e1..
ownership of
d129d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMbwp..
/
d4395..
ownership of
1962e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMdCP..
/
f3f77..
ownership of
a1fc1..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJbA..
/
cd5fb..
ownership of
90e3e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLuW..
/
08e17..
ownership of
87e4b..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMJj8..
/
84b83..
ownership of
6435d..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
TMLgB..
/
d2ea9..
ownership of
eaa5e..
as prop with payaddr
PrEBh..
rights free controlledby
PrEBh..
upto 0
PUSP5..
/
83e1e..
doc published by
PrEBh..
Param
pack_p
pack_p
:
ι
→
(
ι
→
ο
) →
ι
Definition
struct_p
struct_p
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι → ο
.
x1
(
pack_p
x2
x3
)
)
⟶
x1
x0
Param
ordsucc
ordsucc
:
ι
→
ι
Definition
True
True
:=
∀ x0 : ο .
x0
⟶
x0
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
MetaCat_terminal_p
terminal_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
and
(
x0
x4
)
(
∀ x6 .
x0
x6
⟶
and
(
x1
x6
x4
(
x5
x6
)
)
(
∀ x7 .
x1
x6
x4
x7
⟶
x7
=
x5
x6
)
)
Param
UnaryPredHom
Hom_struct_p
:
ι
→
ι
→
ι
→
ο
Param
struct_id
struct_id
:
ι
→
ι
Param
lam
Sigma
:
ι
→
(
ι
→
ι
) →
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
lam_comp
lam_comp
:=
λ x0 x1 x2 .
lam
x0
(
λ x3 .
ap
x1
(
ap
x2
x3
)
)
Definition
struct_comp
struct_comp
:=
λ x0 x1 x2 .
lam_comp
(
ap
x0
0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
pack_p_0_eq2
pack_p_0_eq2
:
∀ x0 .
∀ x1 :
ι → ο
.
x0
=
ap
(
pack_p
x0
x1
)
0
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
55fb5..
Hom_struct_p_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι → ο
.
∀ x4 .
UnaryPredHom
(
pack_p
x0
x2
)
(
pack_p
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
x2
x6
⟶
x3
(
ap
x4
x6
)
)
Known
lam_Pi
lam_Pi
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
x3
)
⟶
lam
x0
x2
∈
Pi
x0
x1
Known
In_0_1
In_0_1
:
0
∈
1
Known
TrueI
TrueI
:
True
Known
Pi_eta
Pi_eta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
Pi
x0
x1
⟶
lam
x0
(
ap
x2
)
=
x2
Known
encode_u_ext
encode_u_ext
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x1
x3
=
x2
x3
)
⟶
lam
x0
x1
=
lam
x0
x2
Param
Sing
Sing
:
ι
→
ι
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
eq_1_Sing0
eq_1_Sing0
:
1
=
Sing
0
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Theorem
6435d..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
x0
(
pack_p
1
(
λ x1 .
True
)
)
⟶
MetaCat_terminal_p
x0
UnaryPredHom
struct_id
struct_comp
(
pack_p
1
(
λ x1 .
True
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
(proof)
Param
omega
omega
:
ι
Definition
MetaCat_nno_p
nno_p
:=
λ x0 :
ι → ο
.
λ x1 :
ι →
ι →
ι → ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι →
ι →
ι →
ι → ι
.
λ x4 .
λ x5 :
ι → ι
.
λ x6 x7 x8 .
λ x9 :
ι →
ι →
ι → ι
.
and
(
and
(
and
(
and
(
MetaCat_terminal_p
x0
x1
x2
x3
x4
x5
)
(
x0
x6
)
)
(
x1
x4
x6
x7
)
)
(
x1
x6
x6
x8
)
)
(
∀ x10 x11 x12 .
x0
x10
⟶
x1
x4
x10
x11
⟶
x1
x10
x10
x12
⟶
and
(
and
(
and
(
x1
x6
x10
(
x9
x10
x11
x12
)
)
(
x3
x4
x6
x10
(
x9
x10
x11
x12
)
x7
=
x11
)
)
(
x3
x6
x6
x10
(
x9
x10
x11
x12
)
x8
=
x3
x6
x10
x10
x12
(
x9
x10
x11
x12
)
)
)
(
∀ x13 .
x1
x6
x10
x13
⟶
x3
x4
x6
x10
x13
x7
=
x11
⟶
x3
x6
x6
x10
x13
x8
=
x3
x6
x10
x10
x12
x13
⟶
x13
=
x9
x10
x11
x12
)
)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Known
and5I
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
and4I
and4I
:
∀ x0 x1 x2 x3 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
and
(
and
(
and
x0
x1
)
x2
)
x3
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Known
beta
beta
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
ap
(
lam
x0
x1
)
x2
=
x1
x2
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
90e3e..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_p
x1
)
⟶
x0
(
pack_p
1
(
λ x1 .
True
)
)
⟶
x0
(
pack_p
omega
(
λ x1 .
True
)
)
⟶
MetaCat_nno_p
x0
UnaryPredHom
struct_id
struct_comp
(
pack_p
1
(
λ x1 .
True
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
(
pack_p
omega
(
λ x1 .
True
)
)
(
lam
1
(
λ x1 .
0
)
)
(
lam
omega
ordsucc
)
(
λ x1 x2 x3 .
lam
omega
(
nat_primrec
(
ap
x2
0
)
(
λ x4 .
ap
x3
)
)
)
(proof)
Known
pack_struct_p_I
pack_struct_p_I
:
∀ x0 .
∀ x1 :
ι → ο
.
struct_p
(
pack_p
x0
x1
)
Theorem
1962e..
:
MetaCat_terminal_p
struct_p
UnaryPredHom
struct_id
struct_comp
(
pack_p
1
(
λ x0 .
True
)
)
(
λ x0 .
lam
(
ap
x0
0
)
(
λ x1 .
0
)
)
(proof)
Theorem
dcba1..
MetaCat_struct_p_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
struct_p
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
unpack_p_o
unpack_p_o
:
ι
→
(
ι
→
(
ι
→
ο
) →
ο
) →
ο
Definition
PtdPred
struct_p_nonempty
:=
λ x0 .
and
(
struct_p
x0
)
(
unpack_p_o
x0
(
λ x1 .
λ x2 :
ι → ο
.
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
x1
)
(
x2
x4
)
⟶
x3
)
⟶
x3
)
)
Known
93af6..
:
∀ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
x1
x3
)
⟶
x2
)
⟶
x2
)
⟶
PtdPred
(
pack_p
x0
x1
)
Theorem
5ac29..
:
MetaCat_terminal_p
PtdPred
UnaryPredHom
struct_id
struct_comp
(
pack_p
1
(
λ x0 .
True
)
)
(
λ x0 .
lam
(
ap
x0
0
)
(
λ x1 .
0
)
)
(proof)
Theorem
b8863..
MetaCat_struct_p_nonempty_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
PtdPred
UnaryPredHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Param
pack_r
pack_r
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
struct_r
struct_r
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
ι →
ι → ο
.
x1
(
pack_r
x2
x3
)
)
⟶
x1
x0
Param
BinRelnHom
Hom_struct_r
:
ι
→
ι
→
ι
→
ο
Known
pack_r_0_eq2
pack_r_0_eq2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
x2
x0
(
ap
(
pack_r
x0
x1
)
0
)
⟶
x2
(
ap
(
pack_r
x0
x1
)
0
)
x0
Known
c84ab..
Hom_struct_r_pack
:
∀ x0 x1 .
∀ x2 x3 :
ι →
ι → ο
.
∀ x4 .
BinRelnHom
(
pack_r
x0
x2
)
(
pack_r
x1
x3
)
x4
=
and
(
x4
∈
setexp
x1
x0
)
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x2
x6
x7
⟶
x3
(
ap
x4
x6
)
(
ap
x4
x7
)
)
Theorem
33e42..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
x0
(
pack_r
1
(
λ x1 x2 .
True
)
)
⟶
MetaCat_terminal_p
x0
BinRelnHom
struct_id
struct_comp
(
pack_r
1
(
λ x1 x2 .
True
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
(proof)
Theorem
2f257..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
x0
x1
⟶
struct_r
x1
)
⟶
x0
(
pack_r
1
(
λ x1 x2 .
True
)
)
⟶
x0
(
pack_r
omega
(
λ x1 x2 .
x1
=
x2
)
)
⟶
MetaCat_nno_p
x0
BinRelnHom
struct_id
struct_comp
(
pack_r
1
(
λ x1 x2 .
True
)
)
(
λ x1 .
lam
(
ap
x1
0
)
(
λ x2 .
0
)
)
(
pack_r
omega
(
λ x1 x2 .
x1
=
x2
)
)
(
lam
1
(
λ x1 .
0
)
)
(
lam
omega
ordsucc
)
(
λ x1 x2 x3 .
lam
omega
(
nat_primrec
(
ap
x2
0
)
(
λ x4 .
ap
x3
)
)
)
(proof)
Param
unpack_r_o
unpack_r_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ο
) →
ο
) →
ο
Definition
PER
struct_r_per
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
a3466..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
PER
(
pack_r
x0
x1
)
Theorem
7d132..
MetaCat_struct_r_per_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
PER
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)
Definition
EquivReln
struct_r_equivreln
:=
λ x0 .
and
(
struct_r
x0
)
(
unpack_r_o
x0
(
λ x1 .
λ x2 :
ι →
ι → ο
.
and
(
and
(
∀ x3 .
x3
∈
x1
⟶
x2
x3
x3
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x3
)
)
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 .
x4
∈
x1
⟶
∀ x5 .
x5
∈
x1
⟶
x2
x3
x4
⟶
x2
x4
x5
⟶
x2
x3
x5
)
)
)
Known
517b3..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 .
x2
∈
x0
⟶
x1
x2
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
∈
x0
⟶
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x1
x2
x3
⟶
x1
x3
x4
⟶
x1
x2
x4
)
⟶
EquivReln
(
pack_r
x0
x1
)
Theorem
eece9..
MetaCat_struct_r_equivreln_nno
:
∀ x0 : ο .
(
∀ x1 .
(
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
(
∀ x4 : ο .
(
∀ x5 .
(
∀ x6 : ο .
(
∀ x7 .
(
∀ x8 : ο .
(
∀ x9 .
(
∀ x10 : ο .
(
∀ x11 :
ι →
ι →
ι → ι
.
MetaCat_nno_p
EquivReln
BinRelnHom
struct_id
struct_comp
x1
x3
x5
x7
x9
x11
⟶
x10
)
⟶
x10
)
⟶
x8
)
⟶
x8
)
⟶
x6
)
⟶
x6
)
⟶
x4
)
⟶
x4
)
⟶
x2
)
⟶
x2
)
⟶
x0
)
⟶
x0
(proof)