Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . (∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim1 (x6 x7 x8) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 x7 x8 = x6 x10 x13)x12)x12)x11)x11) = x7)(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 x7 x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x6 x7 x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . ∀ x9 : ο . (prim1 x8 x0(∀ x10 : ο . (∀ x11 . and (prim1 x11 x0) (x7 = x6 x8 x11)x10)x10)x9)x9)) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)prim1 (prim0 (λ x8 . ∀ x9 : ο . (prim1 x8 x0x7 = x6 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) x8x9)x9)) x0)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x10 x13)x12)x12)x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13)x12)x12)x11)x11)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)x7 = x8)prim1 (x6 x1 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)prim1 (x6 x2 x1) (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x8 = x6 x15 x18)x17)x17)x16)x16))) (x3 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))) = x6 x10 x13)x12)x12)x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13)x12)x12)x11)x11)))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 (x3 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14))) (x3 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x6 (x3 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19))) (x3 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))) = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x3 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim1 (x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10))))) (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x6 (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x8 = x6 x15 x18)x17)x17)x16)x16))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))))) (x3 (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x7 = x6 x15 x18)x17)x17)x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x8 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16))) (x4 (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0x7 = x6 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) x15x16)x16)) (prim0 (λ x15 . ∀ x16 : ο . (prim1 x15 x0(∀ x17 : ο . (∀ x18 . and (prim1 x18 x0) (x8 = x6 x15 x18)x17)x17)x16)x16)))) = x6 x10 x13)x12)x12)x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13)x12)x12)x11)x11))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x6 (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))))) (x3 (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x8 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14))) (x4 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0x7 = x6 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) x13x14)x14)) (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14)))) = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x6 (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))))) (x3 (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x7 = x6 x18 x21)x20)x20)x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x8 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x8 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19))) (x4 (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0x7 = x6 (prim0 (λ x21 . ∀ x22 : ο . (prim1 x21 x0(∀ x23 : ο . (∀ x24 . and (prim1 x24 x0) (x7 = x6 x21 x24)x23)x23)x22)x22)) x18x19)x19)) (prim0 (λ x18 . ∀ x19 : ο . (prim1 x18 x0(∀ x20 : ο . (∀ x21 . and (prim1 x21 x0) (x8 = x6 x18 x21)x20)x20)x19)x19)))) = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11) = x3 (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x7 = x6 x10 x13)x12)x12)x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x8 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x8 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11))) (x4 (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0x7 = x6 (prim0 (λ x13 . ∀ x14 : ο . (prim1 x13 x0(∀ x15 : ο . (∀ x16 . and (prim1 x16 x0) (x7 = x6 x13 x16)x15)x15)x14)x14)) x10x11)x11)) (prim0 (λ x10 . ∀ x11 : ο . (prim1 x10 x0(∀ x12 : ο . (∀ x13 . and (prim1 x13 x0) (x8 = x6 x10 x13)x12)x12)x11)x11))))explicit_Field x0 x1 x2 x3 x4(∀ x7 . prim1 x7 x0∀ x8 . prim1 x8 x0∀ x9 . prim1 x9 x0∀ x10 . prim1 x10 x0x6 x7 x8 = x6 x9 x10∀ x11 : ο . (x7 = x9x8 = x10x11)x11)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))))(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)(x7 = x6 x1 x1∀ x8 : ο . x8)∀ x8 : ο . (∀ x9 . and (prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)) (x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x9 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x9 = x6 x11 x14)x13)x13)x12)x12)))) = x6 x2 x1)x8)x8)(∀ x7 . prim1 x7 (3b429.. x0 (λ x8 . x0) (λ x8 x9 . True) x6)∀ x8 . prim1 x8 (3b429.. x0 (λ x9 . x0) (λ x9 x10 . True) x6)∀ x9 . prim1 x9 (3b429.. x0 (λ x10 . x0) (λ x10 x11 . True) x6)x6 (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))) (x3 (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x7 = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (x3 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (x3 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))) (x4 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x7 = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (x3 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) = x6 x11 x14)x13)x13)x12)x12)))) = x6 (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x8 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x8 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0(∀ x13 : ο . (∀ x14 . and (prim1 x14 x0) (x6 (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))))) (x3 (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x7 = x6 x16 x19)x18)x18)x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x9 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17))) (x4 (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0x7 = x6 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) x16x17)x17)) (prim0 (λ x16 . ∀ x17 : ο . (prim1 x16 x0(∀ x18 : ο . (∀ x19 . and (prim1 x19 x0) (x9 = x6 x16 x19)x18)x18)x17)x17)))) = x6 x11 x14)x13)x13)x12)x12))) (x3 (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x8 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x8 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x8 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x8 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x8 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x8 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12)) (prim0 (λ x11 . ∀ x12 : ο . (prim1 x11 x0x6 (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))))) (x3 (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x7 = x6 x14 x17)x16)x16)x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x9 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x9 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15))) (x4 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0x7 = x6 (prim0 (λ x17 . ∀ x18 : ο . (prim1 x17 x0(∀ x19 : ο . (∀ x20 . and (prim1 x20 x0) (x7 = x6 x17 x20)x19)x19)x18)x18)) x14x15)x15)) (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x9 = x6 x14 x17)x16)x16)x15)x15)))) = x6 (prim0 (λ x14 . ∀ x15 : ο . (prim1 x14 x0(∀ x16 : ο . (∀ x17 . and (prim1 x17 x0) (x6 (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))))) (x3 (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x7 = x6 x19 x22)x21)x21)x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x9 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x9 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20))) (x4 (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0x7 = x6 (prim0 (λ x22 . ∀ x23 : ο . (prim1 x22 x0(∀ x24 : ο . (∀ x25 . and (prim1 x25 x0) (x7 = x6 x22 x25)x24)x24)x23)x23)) x19x20)x20)) (prim0 (λ x19 . ∀ x20 : ο . (prim1 x19 x0(∀ x21 : ο . (∀ x22 . and (prim1 x22 x0) (x9 = x6 x19 x22)x21)x21)x20)x20)))) = x6 x14 x17)x16)x16)x15)x15)) x11x12)x12))))explicit_Field (3b429.. x0 (λ x7 . x0) (λ x7 x8 . True) x6) (x6 x1 x1) (x6 x2 x1) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (x3 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))))) (x3 (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x7 = x6 x9 x12)x11)x11)x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x8 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x8 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10))) (x4 (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0x7 = x6 (prim0 (λ x12 . ∀ x13 : ο . (prim1 x12 x0(∀ x14 : ο . (∀ x15 . and (prim1 x15 x0) (x7 = x6 x12 x15)x14)x14)x13)x13)) x9x10)x10)) (prim0 (λ x9 . ∀ x10 : ο . (prim1 x9 x0(∀ x11 : ο . (∀ x12 . and (prim1 x12 x0) (x8 = x6 x9 x12)x11)x11)x10)x10)))))
as obj
-
as prop
79042..
theory
HoTg
stx
9f457..
address
TMTAD..