Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 : ο .
(
wceq
csslt
(
copab
(
λ x1 x2 .
w3a
(
wss
(
cv
x1
)
csur
)
(
wss
(
cv
x2
)
csur
)
(
wral
(
λ x3 .
wral
(
λ x4 .
wbr
(
cv
x3
)
(
cv
x4
)
cslt
)
(
λ x4 .
cv
x2
)
)
(
λ x3 .
cv
x1
)
)
)
)
⟶
wceq
cscut
(
cmpt2
(
λ x1 x2 .
cpw
csur
)
(
λ x1 x2 .
cima
csslt
(
csn
(
cv
x1
)
)
)
(
λ x1 x2 .
crio
(
λ x3 .
wceq
(
cfv
(
cv
x3
)
cbday
)
(
cint
(
cima
cbday
(
crab
(
λ x4 .
wa
(
wbr
(
cv
x1
)
(
csn
(
cv
x4
)
)
csslt
)
(
wbr
(
csn
(
cv
x4
)
)
(
cv
x2
)
csslt
)
)
(
λ x4 .
csur
)
)
)
)
)
(
λ x3 .
crab
(
λ x4 .
wa
(
wbr
(
cv
x1
)
(
csn
(
cv
x4
)
)
csslt
)
(
wbr
(
csn
(
cv
x4
)
)
(
cv
x2
)
csslt
)
)
(
λ x4 .
csur
)
)
)
)
⟶
wceq
cmade
(
crecs
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cima
cscut
(
cxp
(
cpw
(
cuni
(
crn
(
cv
x1
)
)
)
)
(
cpw
(
cuni
(
crn
(
cv
x1
)
)
)
)
)
)
)
)
⟶
wceq
cold
(
cmpt
(
λ x1 .
con0
)
(
λ x1 .
cuni
(
cima
cmade
(
cv
x1
)
)
)
)
⟶
wceq
cnew
(
cmpt
(
λ x1 .
con0
)
(
λ x1 .
cdif
(
cfv
(
cv
x1
)
cold
)
(
cfv
(
cv
x1
)
cmade
)
)
)
⟶
wceq
cleft
(
cmpt
(
λ x1 .
csur
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wbr
(
cv
x2
)
(
cv
x3
)
cslt
)
(
wbr
(
cv
x3
)
(
cv
x1
)
cslt
)
⟶
wcel
(
cfv
(
cv
x2
)
cbday
)
(
cfv
(
cv
x3
)
cbday
)
)
(
λ x3 .
csur
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cbday
)
cold
)
)
)
⟶
wceq
cright
(
cmpt
(
λ x1 .
csur
)
(
λ x1 .
crab
(
λ x2 .
wral
(
λ x3 .
wa
(
wbr
(
cv
x1
)
(
cv
x3
)
cslt
)
(
wbr
(
cv
x3
)
(
cv
x2
)
cslt
)
⟶
wcel
(
cfv
(
cv
x2
)
cbday
)
(
cfv
(
cv
x3
)
cbday
)
)
(
λ x3 .
csur
)
)
(
λ x2 .
cfv
(
cfv
(
cv
x1
)
cbday
)
cold
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
ctxp
x1
x2
)
(
cin
(
ccom
(
ccnv
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
x1
)
(
ccom
(
ccnv
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
x2
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cpprod
x1
x2
)
(
ctxp
(
ccom
x1
(
cres
c1st
(
cxp
cvv
cvv
)
)
)
(
ccom
x2
(
cres
c2nd
(
cxp
cvv
cvv
)
)
)
)
)
⟶
wceq
csset
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
ctxp
cep
(
cdif
cvv
cep
)
)
)
)
⟶
wceq
ctrans
(
cdif
cvv
(
crn
(
cdif
(
ccom
cep
cep
)
cep
)
)
)
⟶
wceq
cbigcup
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
cep
)
cvv
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cfix
x1
)
(
cdm
(
cin
x1
cid
)
)
)
⟶
wceq
climits
(
cdif
(
cin
con0
(
cfix
cbigcup
)
)
(
csn
c0
)
)
⟶
wceq
cfuns
(
cdif
(
cpw
(
cxp
cvv
cvv
)
)
(
cfix
(
ccom
cep
(
ccom
(
ctxp
c1st
(
ccom
(
cdif
cvv
cid
)
c2nd
)
)
(
ccnv
cep
)
)
)
)
)
⟶
wceq
csingle
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
cid
cvv
)
)
)
)
⟶
wceq
csingles
(
crn
csingle
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cimage
x1
)
(
cdif
(
cxp
cvv
cvv
)
(
crn
(
csymdif
(
ctxp
cvv
cep
)
(
ctxp
(
ccom
cep
(
ccnv
x1
)
)
cvv
)
)
)
)
)
⟶
x0
)
⟶
x0
as obj
-
as prop
b4a38..
theory
SetMM
stx
ebbdd..
address
TMWXo..