Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr6yb..
/
3b633..
PULPZ..
/
2d409..
vout
Pr6yb..
/
a3aed..
24.98 bars
TMMxT..
/
36941..
ownership of
51334..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQBf..
/
f9159..
ownership of
9a54b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLKQ..
/
af013..
ownership of
cf0a4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW84..
/
b6c1b..
ownership of
ed929..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNGT..
/
af4e1..
ownership of
b8260..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRD8..
/
17f5d..
ownership of
ad5f2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNb7..
/
d46b3..
ownership of
fc3fe..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb6Q..
/
6b0b3..
ownership of
24120..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFqG..
/
ac11d..
ownership of
5d7d8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQiH..
/
1e0bd..
ownership of
73c6a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPWq..
/
4ec5f..
ownership of
e9809..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYku..
/
86d56..
ownership of
174f1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMctN..
/
3b658..
ownership of
72750..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUy9..
/
c42e7..
ownership of
1031c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV5y..
/
9b6cb..
ownership of
5e479..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEhx..
/
45a28..
ownership of
8d3c0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHPA..
/
ba753..
ownership of
d3f5a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKCt..
/
237d0..
ownership of
c4484..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPoV..
/
95226..
ownership of
80085..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTCz..
/
f1a22..
ownership of
6863a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPWt..
/
e3d43..
ownership of
8ab77..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVdd..
/
f28b1..
ownership of
a608f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRrZ..
/
b6d43..
ownership of
e9aad..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTJk..
/
20099..
ownership of
5a82d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVtJ..
/
ed006..
ownership of
70d81..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS5w..
/
ef327..
ownership of
f9087..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHwd..
/
8bc85..
ownership of
12b50..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdWm..
/
be4ef..
ownership of
73d72..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNi6..
/
164f0..
ownership of
e66bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdbs..
/
dfcc9..
ownership of
4055a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZFU..
/
28ed5..
ownership of
0987d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFBZ..
/
ef906..
ownership of
4a131..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSUL..
/
138ae..
ownership of
69b45..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK1T..
/
67310..
ownership of
94ece..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTuY..
/
512a3..
ownership of
18def..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRak..
/
dcafd..
ownership of
444bb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ8K..
/
00207..
ownership of
9df88..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZgN..
/
93a73..
ownership of
66e69..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYJm..
/
6d3a0..
ownership of
fcc31..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPKc..
/
cb743..
ownership of
bcaae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY6d..
/
c1a21..
ownership of
06e33..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdLR..
/
7067e..
ownership of
24d62..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMH1L..
/
bd592..
ownership of
b2101..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXFp..
/
ad0e6..
ownership of
bc9e4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMckL..
/
46905..
ownership of
7ef48..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX23..
/
786c9..
ownership of
3e385..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTta..
/
29e19..
ownership of
6b57f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUgh..
/
9165c..
ownership of
341c1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcZu..
/
dc600..
ownership of
49f62..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP8U..
/
62b8c..
ownership of
3508c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPwh..
/
6917d..
ownership of
e86e6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZwL..
/
66c64..
ownership of
818c3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb9u..
/
86d8f..
ownership of
0b346..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMag9..
/
6a4ce..
ownership of
834cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaLr..
/
d90cc..
ownership of
58312..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXHc..
/
4bb5e..
ownership of
89af4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVLJ..
/
58cfe..
ownership of
45095..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVwL..
/
60081..
ownership of
30b3e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEu2..
/
ca10e..
ownership of
b869f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRcp..
/
08348..
ownership of
176a3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMT7..
/
c3eaa..
ownership of
773af..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWUN..
/
401ec..
ownership of
2f8cc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbCo..
/
663b8..
ownership of
cab07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQyD..
/
ca901..
ownership of
a13f3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGHZ..
/
49856..
ownership of
a4102..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTz4..
/
327e6..
ownership of
80e2f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZaZ..
/
906bc..
ownership of
65809..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTjK..
/
4a08c..
ownership of
99dd2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNy7..
/
e705e..
ownership of
c7fd8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNpU..
/
e7b29..
ownership of
a6297..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVb1..
/
cbdcb..
ownership of
63542..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbQj..
/
99570..
ownership of
f5f46..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcLV..
/
1a91d..
ownership of
3d8f2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU2j..
/
89604..
ownership of
05e35..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN2r..
/
da7e0..
ownership of
683f8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK71..
/
a3f75..
ownership of
610eb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGvw..
/
bf208..
ownership of
289de..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRCG..
/
0103e..
ownership of
2b189..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKVT..
/
697c9..
ownership of
73744..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK1c..
/
d0ce5..
ownership of
e7447..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWzy..
/
55e05..
ownership of
9b86c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaJb..
/
d7ab5..
ownership of
56e2b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW6f..
/
7729b..
ownership of
9ef04..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcQX..
/
baadd..
ownership of
f0056..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRxR..
/
481c5..
ownership of
caff9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPMj..
/
1fabf..
ownership of
74d95..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU3h..
/
78d5c..
ownership of
98a70..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUC2..
/
64357..
ownership of
db903..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKeW..
/
a80c1..
ownership of
8f14c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbro..
/
fbd29..
ownership of
f625f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc7X..
/
fc078..
ownership of
fc16f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKmk..
/
02ad4..
ownership of
3df02..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP1f..
/
1b089..
ownership of
5acf4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ98..
/
76d9e..
ownership of
81a95..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdVw..
/
44597..
ownership of
1019c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUh7..
/
e15b3..
ownership of
7a7bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPZX..
/
554b8..
ownership of
91610..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVYb..
/
3afb1..
ownership of
011ac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNZq..
/
5db31..
ownership of
5ec19..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKMd..
/
6dc00..
ownership of
b56b0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPxe..
/
b5485..
ownership of
74f86..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRpJ..
/
f7222..
ownership of
9ab42..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJnD..
/
6edc8..
ownership of
91633..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ5H..
/
4faa8..
ownership of
26b43..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQwd..
/
e7808..
ownership of
8bc8a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJw4..
/
ca58e..
ownership of
079a7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaXD..
/
8f8ab..
ownership of
9e504..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMboY..
/
7a4db..
ownership of
33af3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU9x..
/
8f63e..
ownership of
5fe65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMW6M..
/
16036..
ownership of
43949..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK5L..
/
b8be5..
ownership of
d2a28..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPxq..
/
92af6..
ownership of
c3f6c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb1o..
/
5786f..
ownership of
71580..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZX3..
/
249d4..
ownership of
0274a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN6Z..
/
8bdea..
ownership of
2bf47..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMux..
/
cfdd1..
ownership of
79c0f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLbz..
/
4e4ac..
ownership of
f9e4c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLyP..
/
42708..
ownership of
44ab4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZD8..
/
c5f50..
ownership of
4222f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKka..
/
3ff2c..
ownership of
9d877..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSc5..
/
068c0..
ownership of
0b40b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbTp..
/
27d45..
ownership of
362e3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa93..
/
d233c..
ownership of
2849e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ3h..
/
7cb1d..
ownership of
56d1b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ2G..
/
30e67..
ownership of
f447c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZMC..
/
ec770..
ownership of
84206..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNmx..
/
ab560..
ownership of
5777c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXHW..
/
3b8c8..
ownership of
f3e60..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUri..
/
8428a..
ownership of
6901c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdtU..
/
c72ee..
ownership of
651a3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJKk..
/
f2d29..
ownership of
07b63..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMayj..
/
1dcf4..
ownership of
f12f7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdSe..
/
1008d..
ownership of
6f8b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWsi..
/
17299..
ownership of
8feed..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT2Y..
/
236a9..
ownership of
6c751..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMP6i..
/
4c98b..
ownership of
ecd65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd9T..
/
fcf88..
ownership of
96ff7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJEX..
/
f7d99..
ownership of
550dd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTGQ..
/
6bc63..
ownership of
13649..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXoh..
/
58585..
ownership of
d5d88..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcbN..
/
029f1..
ownership of
97762..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZZ4..
/
474c9..
ownership of
7ee1f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNff..
/
f3966..
ownership of
01947..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNwA..
/
46566..
ownership of
59e7e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMViD..
/
606f3..
ownership of
c14f1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLD..
/
cf258..
ownership of
8b632..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLAq..
/
87ac7..
ownership of
3bcdb..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR3C..
/
1b6a8..
ownership of
ca7f1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKg3..
/
1b78e..
ownership of
04077..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTP4..
/
ed44d..
ownership of
08ccc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWZv..
/
79be9..
ownership of
1d1e5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWpF..
/
825f4..
ownership of
6b844..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFde..
/
1bebf..
ownership of
1c0d8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZuk..
/
e3c2f..
ownership of
0090d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMW2..
/
5141b..
ownership of
135b2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXE9..
/
ce4df..
ownership of
edef1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXAz..
/
8a9f8..
ownership of
d4d11..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRb3..
/
28d27..
ownership of
957ef..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUCo..
/
83a42..
ownership of
d976e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPqW..
/
c513a..
ownership of
3fb5d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVXb..
/
b7a17..
ownership of
c70b7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcao..
/
64a4c..
ownership of
8942d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJgG..
/
fe13f..
ownership of
3d094..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMeH..
/
91c16..
ownership of
12f0b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPW9..
/
28fa6..
ownership of
38265..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRTZ..
/
b61ae..
ownership of
c5bd1..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMab4..
/
0726b..
ownership of
c596a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaTp..
/
a4789..
ownership of
dac2a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHA7..
/
b54b5..
ownership of
373f2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPnC..
/
f4e91..
ownership of
ad51e..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKrC..
/
ae616..
ownership of
1b748..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMShw..
/
1eb2c..
ownership of
4f82c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdM9..
/
9d0fa..
ownership of
a0d6b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYhB..
/
5fc6b..
ownership of
3058d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUbF9..
/
9124e..
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
eb53d..
:
ι
→
CT2
ι
Definition
a0d6b..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι → ι
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
0fc90..
x0
x3
)
x4
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
97762..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
x0
=
a0d6b..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
13649..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
x0
=
f482f..
(
a0d6b..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
96ff7..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
x0
=
a0d6b..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
6c751..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
a0d6b..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Param
e3162..
:
ι
→
ι
→
ι
→
ι
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
35054..
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
e3162..
(
eb53d..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
6f8b9..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
x0
=
a0d6b..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
07b63..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
a0d6b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
6901c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
x0
=
a0d6b..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
5777c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 x5 .
prim1
x5
x0
⟶
x3
x5
=
f482f..
(
f482f..
(
a0d6b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Theorem
f447c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
x0
=
a0d6b..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
2849e..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
x4
=
f482f..
(
a0d6b..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
0b40b..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι → ι
.
∀ x8 x9 .
a0d6b..
x0
x2
x4
x6
x8
=
a0d6b..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
x8
=
x9
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
8fdaf..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x1
x3
x4
=
x2
x3
x4
)
⟶
eb53d..
x0
x1
=
eb53d..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
4222f..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι → ι
.
∀ x7 .
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
iff
(
x1
x8
)
(
x2
x8
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x4
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x5
x8
=
x6
x8
)
⟶
a0d6b..
x0
x1
x3
x5
x7
=
a0d6b..
x0
x2
x4
x6
x7
(proof)
Definition
1b748..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι → ι
.
(
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x5
x6
)
x2
)
⟶
∀ x6 .
prim1
x6
x2
⟶
x1
(
a0d6b..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
f9e4c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι → ι
.
(
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x3
x4
)
x0
)
⟶
∀ x4 .
prim1
x4
x0
⟶
1b748..
(
a0d6b..
x0
x1
x2
x3
x4
)
(proof)
Theorem
2bf47..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
1b748..
(
a0d6b..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
71580..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
1b748..
(
a0d6b..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x3
x5
)
x0
(proof)
Theorem
d2a28..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι → ι
.
∀ x4 .
1b748..
(
a0d6b..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
5fe65..
:
∀ x0 .
1b748..
x0
⟶
x0
=
a0d6b..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
373f2..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
9e504..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
373f2..
(
a0d6b..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
c596a..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
8bc8a..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι → ι
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι → ι
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι → ι
.
(
∀ x9 .
prim1
x9
x1
⟶
x4
x9
=
x8
x9
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
c596a..
(
a0d6b..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Definition
38265..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 x4 :
ι →
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
(
d2155..
x0
x4
)
)
)
)
)
Theorem
91633..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
38265..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
74f86..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 x5 :
ι →
ι → ο
.
x5
x0
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
4a7ef..
)
⟶
x5
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
4a7ef..
)
x0
(proof)
Theorem
5ec19..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
38265..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
91610..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
1019c..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
38265..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
5acf4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
fc16f..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
38265..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
8f14c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Theorem
98a70..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
x0
=
38265..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x5
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
x7
(proof)
Theorem
caff9..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x4
x5
x6
=
2b2e3..
(
f482f..
(
38265..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
x6
(proof)
Theorem
9ef04..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 x8 x9 :
ι →
ι → ο
.
38265..
x0
x2
x4
x6
x8
=
38265..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x8
x10
x11
=
x9
x10
x11
)
(proof)
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Theorem
9b86c..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 x7 x8 :
ι →
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x5
x9
x10
)
(
x6
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x7
x9
x10
)
(
x8
x9
x10
)
)
⟶
38265..
x0
x1
x3
x5
x7
=
38265..
x0
x2
x4
x6
x8
(proof)
Definition
3d094..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 x6 :
ι →
ι → ο
.
x1
(
38265..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
73744..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 x4 :
ι →
ι → ο
.
3d094..
(
38265..
x0
x1
x2
x3
x4
)
(proof)
Theorem
289de..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 x4 :
ι →
ι → ο
.
3d094..
(
38265..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
683f8..
:
∀ x0 .
3d094..
x0
⟶
x0
=
38265..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
c70b7..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
3d8f2..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
c70b7..
(
38265..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
d976e..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
63542..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι →
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 x5 :
ι →
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι →
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
∀ x11 .
prim1
x11
x1
⟶
iff
(
x5
x10
x11
)
(
x9
x10
x11
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
d976e..
(
38265..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
d4d11..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
c7fd8..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
d4d11..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
65809..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
f482f..
(
d4d11..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
a4102..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
d4d11..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
cab07..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
d4d11..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
773af..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
d4d11..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
b869f..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
d4d11..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
45095..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
d4d11..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
58312..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
d4d11..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
0b346..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
d4d11..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
e86e6..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
d4d11..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
49f62..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 :
ι → ο
.
d4d11..
x0
x2
x4
x6
x8
=
d4d11..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Theorem
6b57f..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
∀ x7 x8 :
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
x3
x9
x10
=
x4
x9
x10
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x5
x9
x10
)
(
x6
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
d4d11..
x0
x1
x3
x5
x7
=
d4d11..
x0
x2
x4
x6
x8
(proof)
Definition
135b2..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι → ο
.
x1
(
d4d11..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
7ef48..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
135b2..
(
d4d11..
x0
x1
x2
x3
x4
)
(proof)
Theorem
b2101..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
135b2..
(
d4d11..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
06e33..
:
∀ x0 .
135b2..
x0
⟶
x0
=
d4d11..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
1c0d8..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
fcc31..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
1c0d8..
(
d4d11..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
1d1e5..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
9df88..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
1d1e5..
(
d4d11..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
04077..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι →
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
eb53d..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
x4
)
)
)
)
Theorem
18def..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
04077..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
69b45..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
f482f..
(
04077..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
0987d..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
04077..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
e66bf..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
04077..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
12b50..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
04077..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x3
x6
x7
=
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
x7
(proof)
Theorem
70d81..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x2
x5
x6
=
e3162..
(
f482f..
(
04077..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
x6
(proof)
Theorem
e9aad..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
04077..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
8ab77..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
04077..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Theorem
80085..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
04077..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
d3f5a..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x4
=
f482f..
(
04077..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
5e479..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι →
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 .
04077..
x0
x2
x4
x6
x8
=
04077..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x4
x10
x11
=
x5
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
x8
=
x9
)
(proof)
Theorem
72750..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
∀ x7 .
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
iff
(
x1
x8
)
(
x2
x8
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
x3
x8
x9
=
x4
x8
x9
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x8
x9
)
(
x6
x8
x9
)
)
⟶
04077..
x0
x1
x3
x5
x7
=
04077..
x0
x2
x4
x6
x7
(proof)
Definition
3bcdb..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι →
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
∀ x6 .
prim1
x6
x2
⟶
prim1
(
x4
x5
x6
)
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
04077..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
e9809..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
prim1
(
x2
x3
x4
)
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
3bcdb..
(
04077..
x0
x1
x2
x3
x4
)
(proof)
Theorem
5d7d8..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
3bcdb..
(
04077..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
prim1
(
x2
x5
x6
)
x0
(proof)
Theorem
fc3fe..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι →
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
3bcdb..
(
04077..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
b8260..
:
∀ x0 .
3bcdb..
x0
⟶
x0
=
04077..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
c14f1..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
cf0a4..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
c14f1..
(
04077..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
01947..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
e3162..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
51334..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι →
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι →
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι →
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
∀ x9 .
prim1
x9
x1
⟶
x3
x8
x9
=
x7
x8
x9
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
01947..
(
04077..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)