Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../7d4e7..
PUKeN../f9e4d..
vout
PrCit../a6c13.. 3.94 bars
TMNiJ../ae955.. ownership of 1efd9.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMR7E../69cd5.. ownership of 164be.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMTto../547f5.. ownership of 94e32.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMGR6../f8f22.. ownership of 5f1f3.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUMia../787f8.. doc published by Pr4zB..
Param nat_pnat_p : ιο
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Param equipequip : ιιο
Param binintersectbinintersect : ιιι
Param SepSep : ι(ιο) → ι
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition DirGraphOutNeighbors := λ x0 . λ x1 : ι → ι → ο . λ x2 . {x3 ∈ x0|and (x2 = x3∀ x4 : ο . x4) (x1 x2 x3)}
Param ordsuccordsucc : ιι
Param setminussetminus : ιιι
Param binunionbinunion : ιιι
Param SingSing : ιι
Definition nInnIn := λ x0 x1 . not (x0x1)
Known setminusEsetminusE : ∀ x0 x1 x2 . x2setminus x0 x1and (x2x0) (nIn x2 x1)
Known SepESepE : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1and (x2x0) (x1 x2)
Known FalseEFalseE : False∀ x0 : ο . x0
Known SepISepI : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2x0x1 x2x2Sep x0 x1
Known setminusIsetminusI : ∀ x0 x1 x2 . x2x0nIn x2 x1x2setminus x0 x1
Known binunionEbinunionE : ∀ x0 x1 x2 . x2binunion x0 x1or (x2x0) (x2x1)
Known SepE2SepE2 : ∀ x0 . ∀ x1 : ι → ο . ∀ x2 . x2Sep x0 x1x1 x2
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known SingISingI : ∀ x0 . x0Sing x0
Theorem 94e32.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)∀ x2 x3 . x2x0∀ x4 . nat_p x4(∀ x5 . x5x0(x5 = x2∀ x6 : ο . x6)not (x1 x5 x2)or (equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) x4) (equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) (ordsucc x4)))(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x2)) x4}not (x1 x3 x5))(∀ x5 . x5setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)not (x1 x2 x5))∀ x5 . x5setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) (ordsucc x4) (proof)
Param SubqSubq : ιιο
Param atleastpatleastp : ιιο
Param u3 : ι
Param u6 : ι
Theorem 1efd9.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 x3 . x1 x2 x3x1 x3 x2)(∀ x2 . x2x0atleastp u3 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)x1 x3 x4))(∀ x2 . x2x0atleastp u6 x2not (∀ x3 . x3x2∀ x4 . x4x2(x3 = x4∀ x5 : ο . x5)not (x1 x3 x4)))∀ x2 x3 . x2x0∀ x4 . nat_p x4(∀ x5 . x5x0(x5 = x2∀ x6 : ο . x6)not (x1 x5 x2)or (equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) x4) (equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) (ordsucc x4)))(∀ x5 . x5{x6 ∈ setminus x0 (binunion (DirGraphOutNeighbors x0 x1 x2) (Sing x2))|equip (binintersect (DirGraphOutNeighbors x0 x1 x6) (DirGraphOutNeighbors x0 x1 x2)) x4}not (x1 x3 x5))(∀ x5 . x5setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)not (x1 x2 x5))∀ x5 . x5setminus (DirGraphOutNeighbors x0 x1 x3) (Sing x2)equip (binintersect (DirGraphOutNeighbors x0 x1 x5) (DirGraphOutNeighbors x0 x1 x2)) (ordsucc x4) (proof)