Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
7d4e7..
PUKeN..
/
f9e4d..
vout
PrCit..
/
a6c13..
3.94 bars
TMNiJ..
/
ae955..
ownership of
1efd9..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMR7E..
/
69cd5..
ownership of
164be..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMTto..
/
547f5..
ownership of
94e32..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMGR6..
/
f8f22..
ownership of
5f1f3..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PUMia..
/
787f8..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
equip
equip
:
ι
→
ι
→
ο
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
DirGraphOutNeighbors
:=
λ x0 .
λ x1 :
ι →
ι → ο
.
λ x2 .
{x3 ∈
x0
|
and
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
(
x1
x2
x3
)
}
Param
ordsucc
ordsucc
:
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
94e32..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
∀ x4 .
nat_p
x4
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x1
x5
x2
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
)
)
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
}
⟶
not
(
x1
x3
x5
)
)
⟶
(
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x5
)
)
⟶
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
(proof)
Param
Subq
Subq
:
ι
→
ι
→
ο
Param
atleastp
atleastp
:
ι
→
ι
→
ο
Param
u3
:
ι
Param
u6
:
ι
Theorem
1efd9..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
(
∀ x2 x3 .
x1
x2
x3
⟶
x1
x3
x2
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u3
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
x1
x3
x4
)
)
⟶
(
∀ x2 .
x2
⊆
x0
⟶
atleastp
u6
x2
⟶
not
(
∀ x3 .
x3
∈
x2
⟶
∀ x4 .
x4
∈
x2
⟶
(
x3
=
x4
⟶
∀ x5 : ο .
x5
)
⟶
not
(
x1
x3
x4
)
)
)
⟶
∀ x2 x3 .
x2
∈
x0
⟶
∀ x4 .
nat_p
x4
⟶
(
∀ x5 .
x5
∈
x0
⟶
(
x5
=
x2
⟶
∀ x6 : ο .
x6
)
⟶
not
(
x1
x5
x2
)
⟶
or
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
)
(
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
)
)
⟶
(
∀ x5 .
x5
∈
{x6 ∈
setminus
x0
(
binunion
(
DirGraphOutNeighbors
x0
x1
x2
)
(
Sing
x2
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x6
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
x4
}
⟶
not
(
x1
x3
x5
)
)
⟶
(
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
not
(
x1
x2
x5
)
)
⟶
∀ x5 .
x5
∈
setminus
(
DirGraphOutNeighbors
x0
x1
x3
)
(
Sing
x2
)
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
x0
x1
x5
)
(
DirGraphOutNeighbors
x0
x1
x2
)
)
(
ordsucc
x4
)
(proof)