Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrRL5../010a4..
PUPTv../dd69f..
vout
PrRL5../b5a6a.. 1.96 bars
TMGHM../58ed5.. ownership of 32f88.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMGBo../e0216.. ownership of 0c7af.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMFR4../1ec36.. ownership of 0c0e7.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMYLa../e1e15.. ownership of 2ec52.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMVP8../05e45.. ownership of 7463d.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMUBa../7dcd2.. ownership of f83ad.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMYSB../ad77e.. ownership of 4f23e.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMGCW../6980b.. ownership of 912d2.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMLk2../a9e18.. ownership of d88d8.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
TMSAE../d8b2d.. ownership of 05544.. as prop with payaddr PrQUS.. rights free controlledby PrQUS.. upto 0
PUSR1../57ce2.. doc published by PrQUS..
Param SNoSNo : ιο
Param SNoLeSNoLe : ιιο
Param add_SNoadd_SNo : ιιι
Param minus_SNominus_SNo : ιι
Known add_SNo_minus_R2add_SNo_minus_R2 : ∀ x0 x1 . SNo x0SNo x1add_SNo (add_SNo x0 x1) (minus_SNo x1) = x0
Known add_SNo_Le1add_SNo_Le1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)
Known SNo_add_SNoSNo_add_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (add_SNo x0 x1)
Known SNo_minus_SNoSNo_minus_SNo : ∀ x0 . SNo x0SNo (minus_SNo x0)
Theorem add_SNo_Le1_canceladd_SNo_Le1_cancel : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x0 x1) (add_SNo x2 x1)SNoLe x0 x2 (proof)
Known add_SNo_assocadd_SNo_assoc : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo (add_SNo x0 x1) x2
Known add_SNo_minus_SNo_linvadd_SNo_minus_SNo_linv : ∀ x0 . SNo x0add_SNo (minus_SNo x0) x0 = 0
Known add_SNo_0Radd_SNo_0R : ∀ x0 . SNo x0add_SNo x0 0 = x0
Theorem add_SNo_minus_Le1badd_SNo_minus_Le1b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 (add_SNo x2 x1)SNoLe (add_SNo x0 (minus_SNo x1)) x2 (proof)
Theorem add_SNo_minus_Le1b3add_SNo_minus_Le1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe (add_SNo x0 x1) (add_SNo x3 x2)SNoLe (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3 (proof)
Known SNo_add_SNo_3SNo_add_SNo_3 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNo (add_SNo x0 (add_SNo x1 x2))
Known add_SNo_com_3b_1_2add_SNo_com_3b_1_2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo (add_SNo x0 x1) x2 = add_SNo (add_SNo x0 x2) x1
Known add_SNo_minus_Le2badd_SNo_minus_Le2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe (add_SNo x2 x1) x0SNoLe x2 (add_SNo x0 (minus_SNo x1))
Theorem add_SNo_minus_Le12b3add_SNo_minus_Le12b3 : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLe (add_SNo x0 (add_SNo x1 x5)) (add_SNo x3 (add_SNo x4 x2))SNoLe (add_SNo x0 (add_SNo x1 (minus_SNo x2))) (add_SNo x3 (add_SNo x4 (minus_SNo x5))) (proof)
Param SNoLtSNoLt : ιιο
Known add_SNo_minus_Lt1b3add_SNo_minus_Lt1b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x0 x1) (add_SNo x3 x2)SNoLt (add_SNo x0 (add_SNo x1 (minus_SNo x2))) x3
Known add_SNo_minus_Lt2badd_SNo_minus_Lt2b : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt (add_SNo x2 x1) x0SNoLt x2 (add_SNo x0 (minus_SNo x1))
Theorem add_SNo_minus_Lt12b3add_SNo_minus_Lt12b3 : ∀ x0 x1 x2 x3 x4 x5 . SNo x0SNo x1SNo x2SNo x3SNo x4SNo x5SNoLt (add_SNo x0 (add_SNo x1 x5)) (add_SNo x3 (add_SNo x4 x2))SNoLt (add_SNo x0 (add_SNo x1 (minus_SNo x2))) (add_SNo x3 (add_SNo x4 (minus_SNo x5))) (proof)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Definition SNoCutPSNoCutP := λ x0 x1 . and (and (∀ x2 . x2x0SNo x2) (∀ x2 . x2x1SNo x2)) (∀ x2 . x2x0∀ x3 . x3x1SNoLt x2 x3)
Param SNoCutSNoCut : ιιι
Param binunionbinunion : ιιι
Param lamSigma : ι(ιι) → ι
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param mul_SNomul_SNo : ιιι
Param apap : ιιι
Param ordsuccordsucc : ιι
Param SNoLevSNoLev : ιι
Param famunionfamunion : ι(ιι) → ι
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param SNoEq_SNoEq_ : ιιιο
Known SNoCutP_SNoCut_impredSNoCutP_SNoCut_impred : ∀ x0 x1 . SNoCutP x0 x1∀ x2 : ο . (SNo (SNoCut x0 x1)SNoLev (SNoCut x0 x1)ordsucc (binunion (famunion x0 (λ x3 . ordsucc (SNoLev x3))) (famunion x1 (λ x3 . ordsucc (SNoLev x3))))(∀ x3 . x3x0SNoLt x3 (SNoCut x0 x1))(∀ x3 . x3x1SNoLt (SNoCut x0 x1) x3)(∀ x3 . SNo x3(∀ x4 . x4x0SNoLt x4 x3)(∀ x4 . x4x1SNoLt x3 x4)and (SNoLev (SNoCut x0 x1)SNoLev x3) (SNoEq_ (SNoLev (SNoCut x0 x1)) (SNoCut x0 x1) x3))x2)x2
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Param SNoLSNoL : ιι
Param SNoRSNoR : ιι
Known mul_SNo_eq_3mul_SNo_eq_3 : ∀ x0 x1 . SNo x0SNo x1∀ x2 : ο . (∀ x3 x4 . SNoCutP x3 x4(∀ x5 . x5x3∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5SNoR x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x3)(∀ x5 . x5x4∀ x6 : ο . (∀ x7 . x7SNoL x0∀ x8 . x8SNoR x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)(∀ x7 . x7SNoR x0∀ x8 . x8SNoL x1x5 = add_SNo (mul_SNo x7 x1) (add_SNo (mul_SNo x0 x8) (minus_SNo (mul_SNo x7 x8)))x6)x6)(∀ x5 . x5SNoL x0∀ x6 . x6SNoR x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)(∀ x5 . x5SNoR x0∀ x6 . x6SNoL x1add_SNo (mul_SNo x5 x1) (add_SNo (mul_SNo x0 x6) (minus_SNo (mul_SNo x5 x6)))x4)mul_SNo x0 x1 = SNoCut x3 x4x2)x2
Known SNoCut_extSNoCut_ext : ∀ x0 x1 x2 x3 . SNoCutP x0 x1SNoCutP x2 x3(∀ x4 . x4x0SNoLt x4 (SNoCut x2 x3))(∀ x4 . x4x1SNoLt (SNoCut x2 x3) x4)(∀ x4 . x4x2SNoLt x4 (SNoCut x0 x1))(∀ x4 . x4x3SNoLt (SNoCut x0 x1) x4)SNoCut x0 x1 = SNoCut x2 x3
Known SNoL_ESNoL_E : ∀ x0 . SNo x0∀ x1 . x1SNoL x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x1 x0x2)x2
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known SNoLtLe_orSNoLtLe_or : ∀ x0 x1 . SNo x0SNo x1or (SNoLt x0 x1) (SNoLe x1 x0)
Known FalseEFalseE : False∀ x0 : ο . x0
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Known SNoLt_traSNoLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLt x1 x2SNoLt x0 x2
Definition nInnIn := λ x0 x1 . not (x0x1)
Known In_irrefIn_irref : ∀ x0 . nIn x0 x0
Known SNoLeLt_traSNoLeLt_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLt x1 x2SNoLt x0 x2
Known SNo_mul_SNoSNo_mul_SNo : ∀ x0 x1 . SNo x0SNo x1SNo (mul_SNo x0 x1)
Known SNoLe_traSNoLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x0 x1SNoLe x1 x2SNoLe x0 x2
Known add_SNo_Le2add_SNo_Le2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLe x1 x2SNoLe (add_SNo x0 x1) (add_SNo x0 x2)
Known add_SNo_comadd_SNo_com : ∀ x0 x1 . SNo x0SNo x1add_SNo x0 x1 = add_SNo x1 x0
Known mul_SNo_Lemul_SNo_Le : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLe x2 x0SNoLe x3 x1SNoLe (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known SNoLtLeSNoLtLe : ∀ x0 x1 . SNoLt x0 x1SNoLe x0 x1
Known add_SNo_com_3_0_1add_SNo_com_3_0_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x1 (add_SNo x0 x2)
Known binunionI1binunionI1 : ∀ x0 x1 x2 . x2x0x2binunion x0 x1
Known SNoR_ESNoR_E : ∀ x0 . SNo x0∀ x1 . x1SNoR x0∀ x2 : ο . (SNo x1SNoLev x1SNoLev x0SNoLt x0 x1x2)x2
Known add_SNo_rotate_3_1add_SNo_rotate_3_1 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2add_SNo x0 (add_SNo x1 x2) = add_SNo x2 (add_SNo x0 x1)
Known binunionI2binunionI2 : ∀ x0 x1 x2 . x2x1x2binunion x0 x1
Known SNoLtLe_traSNoLtLe_tra : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x0 x1SNoLe x1 x2SNoLt x0 x2
Known binunionE'binunionE : ∀ x0 x1 x2 . ∀ x3 : ο . (x2x0x3)(x2x1x3)x2binunion x0 x1x3
Known mul_SNo_Ltmul_SNo_Lt : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt x2 x0SNoLt x3 x1SNoLt (add_SNo (mul_SNo x2 x1) (mul_SNo x0 x3)) (add_SNo (mul_SNo x0 x1) (mul_SNo x2 x3))
Known add_SNo_minus_Lt2b3add_SNo_minus_Lt2b3 : ∀ x0 x1 x2 x3 . SNo x0SNo x1SNo x2SNo x3SNoLt (add_SNo x3 x2) (add_SNo x0 x1)SNoLt x3 (add_SNo x0 (add_SNo x1 (minus_SNo x2)))
Known add_SNo_Lt2add_SNo_Lt2 : ∀ x0 x1 x2 . SNo x0SNo x1SNo x2SNoLt x1 x2SNoLt (add_SNo x0 x1) (add_SNo x0 x2)
Param If_iIf_i : οιιι
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known ReplIReplI : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0x1 x2prim5 x0 x1
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Known ReplE_impredReplE_impred : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2prim5 x0 x1∀ x3 : ο . (∀ x4 . x4x0x2 = x1 x4x3)x3
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Theorem mul_SNoCutP_lemmul_SNoCutP_lem : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3and (and (SNoCutP (binunion {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x0 x2} {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x1 x3}) (binunion {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x0 x3} {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x1 x2})) (mul_SNo x4 x5 = SNoCut (binunion {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x0 x2} {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x1 x3}) (binunion {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x0 x3} {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x1 x2}))) (∀ x6 : ο . (∀ x7 x8 x9 x10 . (∀ x11 . x11x7∀ x12 : ο . (∀ x13 . x13x0∀ x14 . x14x2SNo x13SNo x14SNoLt x13 x4SNoLt x14 x5x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x0∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x7)(∀ x11 . x11x8∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x3SNo x13SNo x14SNoLt x4 x13SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x8)(∀ x11 . x11x9∀ x12 : ο . (∀ x13 . x13x0∀ x14 . x14x3SNo x13SNo x14SNoLt x13 x4SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x0∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x9)(∀ x11 . x11x10∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x2SNo x13SNo x14SNoLt x4 x13SNoLt x14 x5x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x10)SNoCutP (binunion x7 x8) (binunion x9 x10)mul_SNo x4 x5 = SNoCut (binunion x7 x8) (binunion x9 x10)x6)x6) (proof)
Theorem mul_SNoCutP_genmul_SNoCutP_gen : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3SNoCutP (binunion {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x0 x2} {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x1 x3}) (binunion {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x0 x3} {add_SNo (mul_SNo (ap x6 0) x5) (add_SNo (mul_SNo x4 (ap x6 1)) (minus_SNo (mul_SNo (ap x6 0) (ap x6 1))))|x6 ∈ setprod x1 x2}) (proof)
Theorem mul_SNoCut_eqmul_SNoCut_eq : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3mul_SNo x4 x5 = SNoCut (binunion {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x0 x2} {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x1 x3}) (binunion {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x0 x3} {add_SNo (mul_SNo (ap x7 0) x5) (add_SNo (mul_SNo x4 (ap x7 1)) (minus_SNo (mul_SNo (ap x7 0) (ap x7 1))))|x7 ∈ setprod x1 x2}) (proof)
Theorem mul_SNoCut_absmul_SNoCut_abs : ∀ x0 x1 x2 x3 x4 x5 . SNoCutP x0 x1SNoCutP x2 x3x4 = SNoCut x0 x1x5 = SNoCut x2 x3∀ x6 : ο . (∀ x7 x8 x9 x10 . (∀ x11 . x11x7∀ x12 : ο . (∀ x13 . x13x0∀ x14 . x14x2SNo x13SNo x14SNoLt x13 x4SNoLt x14 x5x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x0∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x7)(∀ x11 . x11x8∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x3SNo x13SNo x14SNoLt x4 x13SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x8)(∀ x11 . x11x9∀ x12 : ο . (∀ x13 . x13x0∀ x14 . x14x3SNo x13SNo x14SNoLt x13 x4SNoLt x5 x14x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x0∀ x12 . x12x3add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x9)(∀ x11 . x11x10∀ x12 : ο . (∀ x13 . x13x1∀ x14 . x14x2SNo x13SNo x14SNoLt x4 x13SNoLt x14 x5x11 = add_SNo (mul_SNo x13 x5) (add_SNo (mul_SNo x4 x14) (minus_SNo (mul_SNo x13 x14)))x12)x12)(∀ x11 . x11x1∀ x12 . x12x2add_SNo (mul_SNo x11 x5) (add_SNo (mul_SNo x4 x12) (minus_SNo (mul_SNo x11 x12)))x10)SNoCutP (binunion x7 x8) (binunion x9 x10)mul_SNo x4 x5 = SNoCut (binunion x7 x8) (binunion x9 x10)x6)x6 (proof)