Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrS7G..
/
89e51..
PUbLg..
/
b64f8..
vout
PrS7G..
/
ad384..
0.01 bars
TMX82..
/
7c112..
ownership of
58e84..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXD5..
/
4537c..
ownership of
151ee..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd9Q..
/
63a47..
ownership of
da0a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMc9M..
/
e7b1a..
ownership of
a603f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMScM..
/
9e717..
ownership of
ef0df..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHXN..
/
820b7..
ownership of
8a1d2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb57..
/
b1b7a..
ownership of
2a532..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRq1..
/
0631c..
ownership of
41bcf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXxS..
/
d9368..
ownership of
a1176..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT5H..
/
2852f..
ownership of
1784a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRLR..
/
94499..
ownership of
c2a6e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRhi..
/
d67cb..
ownership of
7e22d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaG1..
/
770d9..
ownership of
b4fd2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMavT..
/
0ac78..
ownership of
ea2cd..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXmG..
/
49abe..
ownership of
5fbd5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHds..
/
05212..
ownership of
3fb69..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFsm..
/
3aaac..
ownership of
efb37..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQAJ..
/
d8321..
ownership of
d18e4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEkH..
/
00663..
ownership of
a470d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdoB..
/
fa64a..
ownership of
c1a59..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUXVB..
/
6396c..
doc published by
PrGxv..
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Definition
TransSet
:=
λ x0 .
∀ x1 .
prim1
x1
x0
⟶
Subq
x1
x0
Definition
ordinal
:=
λ x0 .
and
(
TransSet
x0
)
(
∀ x1 .
prim1
x1
x0
⟶
TransSet
x1
)
Param
bc82c..
:
ι
→
ι
→
ι
Param
80242..
:
ι
→
ο
Known
f3bd7..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
x1
=
bc82c..
x1
x0
Known
cbcc4..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
prim1
(
bc82c..
x2
x1
)
(
bc82c..
x0
x1
)
Known
e3ccf..
:
∀ x0 .
ordinal
x0
⟶
80242..
x0
Known
ordinal_Hered
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
ordinal
x1
Theorem
c2a6e..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
prim1
(
bc82c..
x0
x2
)
(
bc82c..
x0
x1
)
(proof)
Param
48ef8..
:
ι
Param
616bf..
:
ι
→
ι
→
ι
Param
ba9d8..
:
ι
→
ο
Known
c2711..
:
∀ x0 .
prim1
x0
48ef8..
⟶
ba9d8..
x0
Param
4a7ef..
:
ι
Param
4ae4a..
:
ι
→
ι
Known
5c211..
:
∀ x0 :
ι → ο
.
x0
4a7ef..
⟶
(
∀ x1 .
ba9d8..
x1
⟶
x0
x1
⟶
x0
(
4ae4a..
x1
)
)
⟶
∀ x1 .
ba9d8..
x1
⟶
x0
x1
Known
97325..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
4a7ef..
=
x0
Known
f30c5..
:
∀ x0 .
616bf..
x0
4a7ef..
=
x0
Known
9b91e..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
bc82c..
x0
(
4ae4a..
x1
)
=
4ae4a..
(
bc82c..
x0
x1
)
Known
f3fb5..
:
∀ x0 .
ba9d8..
x0
⟶
ordinal
x0
Known
1c625..
:
∀ x0 x1 .
ba9d8..
x1
⟶
616bf..
x0
(
4ae4a..
x1
)
=
4ae4a..
(
616bf..
x0
x1
)
Theorem
a1176..
:
∀ x0 .
prim1
x0
48ef8..
⟶
∀ x1 .
prim1
x1
48ef8..
⟶
616bf..
x0
x1
=
bc82c..
x0
x1
(proof)
Known
a3321..
:
∀ x0 .
ba9d8..
x0
⟶
prim1
x0
48ef8..
Known
4183e..
:
∀ x0 .
ba9d8..
x0
⟶
∀ x1 .
ba9d8..
x1
⟶
ba9d8..
(
616bf..
x0
x1
)
Theorem
2a532..
:
∀ x0 .
prim1
x0
48ef8..
⟶
∀ x1 .
prim1
x1
48ef8..
⟶
prim1
(
bc82c..
x0
x1
)
48ef8..
(proof)
Known
47c39..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
x1
=
bc82c..
x0
x2
⟶
x1
=
x2
Theorem
ef0df..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
x1
=
bc82c..
x2
x1
⟶
x0
=
x2
(proof)
Param
e4431..
:
ι
→
ι
Param
56ded..
:
ι
→
ι
Known
9ec10..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x3
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x3
x4
)
⟶
x0
x1
x2
)
⟶
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
x0
x1
x2
Param
02a50..
:
ι
→
ι
→
ι
Param
0ac37..
:
ι
→
ι
→
ι
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Param
23e07..
:
ι
→
ι
Param
5246e..
:
ι
→
ι
Known
8a8cc..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
bc82c..
x0
x1
=
02a50..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x3 .
bc82c..
x3
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
Param
02b90..
:
ι
→
ι
→
ο
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Param
099f3..
:
ι
→
ι
→
ο
Param
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
9ecaa..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 : ο .
(
80242..
(
02a50..
x0
x1
)
⟶
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
(
a842e..
x1
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
)
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
(
02a50..
x0
x1
)
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
(
02a50..
x0
x1
)
x3
)
⟶
(
∀ x3 .
80242..
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
x3
x4
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x3
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
Subq_tra
:
∀ x0 x1 x2 .
Subq
x0
x1
⟶
Subq
x1
x2
⟶
Subq
x0
x2
Known
011e9..
:
∀ x0 x1 x2 .
Subq
x0
x2
⟶
Subq
x1
x2
⟶
Subq
(
0ac37..
x0
x1
)
x2
Known
9b5af..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
a842e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
prim1
x2
(
x1
x4
)
⟶
x3
)
⟶
x3
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
edd11..
:
∀ x0 x1 x2 .
prim1
x2
(
0ac37..
x0
x1
)
⟶
or
(
prim1
x2
x0
)
(
prim1
x2
x1
)
Known
ordinal_In_Or_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
or
(
prim1
x0
x1
)
(
Subq
x1
x0
)
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
In_irref
:
∀ x0 .
nIn
x0
x0
Known
4c9ee..
:
∀ x0 .
80242..
x0
⟶
ordinal
(
e4431..
x0
)
Known
b71d0..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
80242..
(
bc82c..
x0
x1
)
Known
958ef..
:
∀ x0 x1 .
prim1
x1
(
4ae4a..
x0
)
⟶
or
(
prim1
x1
x0
)
(
x1
=
x0
)
Known
bba3d..
:
∀ x0 x1 .
prim1
x0
x1
⟶
nIn
x1
x0
Known
b72a3..
:
∀ x0 .
ordinal
x0
⟶
ordinal
(
4ae4a..
x0
)
Known
9aba9..
:
∀ x0 x1 .
TransSet
x1
⟶
prim1
x0
(
4ae4a..
x1
)
⟶
Subq
x0
x1
Known
45024..
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
ordinal
(
0ac37..
x0
x1
)
Known
d5fb2..
:
∀ x0 .
∀ x1 :
ι → ι
.
(
∀ x2 .
prim1
x2
x0
⟶
ordinal
(
x1
x2
)
)
⟶
ordinal
(
a842e..
x0
x1
)
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
Known
f4ff0..
:
∀ x0 .
Subq
(
5246e..
x0
)
(
56ded..
(
e4431..
x0
)
)
Known
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
Known
e1ffe..
:
∀ x0 .
Subq
(
23e07..
x0
)
(
56ded..
(
e4431..
x0
)
)
Known
fe60b..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
02b90..
(
0ac37..
(
94f9e..
(
23e07..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
23e07..
x1
)
(
bc82c..
x0
)
)
)
(
0ac37..
(
94f9e..
(
5246e..
x0
)
(
λ x2 .
bc82c..
x2
x1
)
)
(
94f9e..
(
5246e..
x1
)
(
bc82c..
x0
)
)
)
Known
c5221..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
ordinal
(
bc82c..
x0
x1
)
Theorem
da0a0..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
Subq
(
e4431..
(
bc82c..
x0
x1
)
)
(
bc82c..
(
e4431..
x0
)
(
e4431..
x1
)
)
(proof)
Param
1beb9..
:
ι
→
ι
→
ο
Known
bfaa9..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
(
56ded..
x0
)
⟶
∀ x2 : ο .
(
prim1
(
e4431..
x1
)
x0
⟶
ordinal
(
e4431..
x1
)
⟶
80242..
x1
⟶
1beb9..
(
e4431..
x1
)
x1
⟶
x2
)
⟶
x2
Known
c8a5e..
:
ordinal
48ef8..
Known
ade9f..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
prim1
x2
x0
⟶
1beb9..
x2
x1
⟶
prim1
x1
(
56ded..
x0
)
Known
b0eab..
:
∀ x0 .
80242..
x0
⟶
1beb9..
(
e4431..
x0
)
x0
Theorem
58e84..
:
∀ x0 .
prim1
x0
(
56ded..
48ef8..
)
⟶
∀ x1 .
prim1
x1
(
56ded..
48ef8..
)
⟶
prim1
(
bc82c..
x0
x1
)
(
56ded..
48ef8..
)
(proof)
Param
8428d..
:
ι
→
ι
Definition
a470d..
:=
0ac37..
48ef8..
(
94f9e..
48ef8..
8428d..
)
Param
3b429..
:
ι
→
(
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
CT2
ι
Param
df931..
:
ι
→
ι
→
ι
Definition
efb37..
:=
3b429..
a470d..
(
λ x0 .
48ef8..
)
(
λ x0 x1 .
x1
=
4a7ef..
⟶
∀ x2 : ο .
x2
)
df931..
Param
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e37c0..
:
ι
→
ι
→
ι
Definition
5fbd5..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
nat_primrec
4a7ef..
(
λ x3 x4 .
If_i
(
prim1
x3
x0
)
4a7ef..
(
e37c0..
(
x2
x3
)
x4
)
)
(
4ae4a..
x1
)
Param
7ce1c..
:
ι
→
ι
→
ι
Definition
b4fd2..
:=
λ x0 x1 .
λ x2 :
ι → ι
.
nat_primrec
(
4ae4a..
4a7ef..
)
(
λ x3 x4 .
If_i
(
prim1
x3
x0
)
(
4ae4a..
4a7ef..
)
(
7ce1c..
(
x2
x3
)
x4
)
)
(
4ae4a..
x1
)