Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr4wS..
/
18094..
PUVTq..
/
65557..
vout
Pr4wS..
/
cb8de..
0.00 bars
TMUu2..
/
ebd14..
ownership of
ba265..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbtK..
/
76269..
ownership of
0108b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUWmM..
/
5ad0c..
doc published by
PrGxv..
Param
c2e41..
:
ι
→
ι
→
ο
Param
3097a..
:
ι
→
(
ι
→
ι
) →
ι
Definition
b5c9f..
:=
λ x0 x1 .
3097a..
x1
(
λ x2 .
x0
)
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
e5b72..
:
ι
→
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Param
f482f..
:
ι
→
ι
→
ι
Param
and
:
ο
→
ο
→
ο
Definition
bij
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
and
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x1
)
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
)
(
∀ x3 .
prim1
x3
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
prim1
x5
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
Known
c6ad4..
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
c2e41..
x0
x1
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
d129e..
:
∀ x0 .
∀ x1 :
ι → ο
.
prim1
(
1216a..
x0
x1
)
(
e5b72..
x0
)
Known
6e275..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
3097a..
x0
x1
)
⟶
∀ x3 .
prim1
x3
(
3097a..
x0
x1
)
⟶
(
∀ x4 .
prim1
x4
x0
⟶
f482f..
x2
x4
=
f482f..
x3
x4
)
⟶
x2
=
x3
Known
9f6cd..
:
∀ x0 .
prim1
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
(
4ae4a..
4a7ef..
)
⟶
x1
x0
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
b2421..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
x1
x2
⟶
prim1
x2
(
1216a..
x0
x1
)
Known
c8c18..
:
4a7ef..
=
4ae4a..
4a7ef..
⟶
∀ x0 : ο .
x0
Known
ac5c1..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
x1
x2
Known
d8d74..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
prim1
x2
(
3097a..
x0
x1
)
⟶
prim1
x3
x0
⟶
prim1
(
f482f..
x2
x3
)
(
x1
x3
)
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Known
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
27474..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
(
x1
x3
)
)
⟶
prim1
(
0fc90..
x0
x2
)
(
3097a..
x0
x1
)
Definition
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
0b783..
:
prim1
(
4ae4a..
4a7ef..
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Known
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
f336d..
:
prim1
4a7ef..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
492ff..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
(
1216a..
x0
x1
)
⟶
∀ x3 : ο .
(
prim1
x2
x0
⟶
x1
x2
⟶
x3
)
⟶
x3
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Known
b21da..
:
∀ x0 x1 .
prim1
x1
(
e5b72..
x0
)
⟶
Subq
x1
x0
Theorem
ba265..
:
∀ x0 .
c2e41..
(
b5c9f..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
x0
)
(
e5b72..
x0
)
(proof)