Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ((ι → ι) → ι)((((ι → ι)ι → ι) → ι)(ι → ι)(ι → ι)ι → ι) → ι . ∀ x1 : (((((ι → ι)ι → ι)(ι → ι)ι → ι) → ι) → ι)(ι → ι → (ι → ι) → ι)ι → ((ι → ι)ι → ι) → ι . ∀ x2 : (((ι → ι)(ι → ι → ι) → ι) → ι)ι → ι . ∀ x3 : (ι → ι)((((ι → ι)ι → ι) → ι) → ι)(ι → ι) → ι . (∀ x4 : (((ι → ι)ι → ι)(ι → ι) → ι) → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 . x9) (λ x9 : ((ι → ι)ι → ι) → ι . 0) (λ x9 . 0) = x5)(∀ x4 : ι → ((ι → ι)ι → ι)(ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 : (ι → (ι → ι)ι → ι) → ι . ∀ x7 : (ι → ι)ι → ι . x3 (λ x9 . x7 (λ x10 . x10) (Inj1 (Inj0 (x1 (λ x10 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0) 0 (λ x10 : ι → ι . λ x11 . 0))))) (λ x9 : ((ι → ι)ι → ι) → ι . Inj1 (x5 0)) (x2 (λ x9 : (ι → ι)(ι → ι → ι) → ι . Inj0 0)) = x7 (λ x9 . Inj1 (Inj1 0)) (Inj0 0))(∀ x4 . ∀ x5 : (ι → (ι → ι)ι → ι)(ι → ι → ι)ι → ι → ι . ∀ x6 x7 . x2 (λ x9 : (ι → ι)(ι → ι → ι) → ι . Inj0 (Inj1 (x5 (λ x10 . λ x11 : ι → ι . λ x12 . x10) (λ x10 x11 . Inj1 0) x6 0))) 0 = Inj1 (Inj0 0))(∀ x4 : (ι → (ι → ι)ι → ι)ι → (ι → ι)ι → ι . ∀ x5 . ∀ x6 : ι → ι . ∀ x7 : ι → (ι → ι → ι) → ι . x2 (λ x9 : (ι → ι)(ι → ι → ι) → ι . x3 (λ x10 . x6 (setsum (x3 (λ x11 . 0) (λ x11 : ((ι → ι)ι → ι) → ι . 0) (λ x11 . 0)) 0)) (λ x10 : ((ι → ι)ι → ι) → ι . 0) (λ x10 . setsum 0 0)) (Inj0 0) = setsum (x4 (λ x9 . λ x10 : ι → ι . λ x11 . 0) 0 (λ x9 . setsum (x0 (λ x10 : ι → ι . Inj1 0) (λ x10 : ((ι → ι)ι → ι) → ι . λ x11 x12 : ι → ι . λ x13 . setsum 0 0)) (x1 (λ x10 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x10 x11 . λ x12 : ι → ι . 0) 0 (λ x10 : ι → ι . λ x11 . x2 (λ x12 : (ι → ι)(ι → ι → ι) → ι . 0) 0))) (setsum (x0 (λ x9 : ι → ι . Inj0 0) (λ x9 : ((ι → ι)ι → ι) → ι . λ x10 x11 : ι → ι . λ x12 . 0)) (x2 (λ x9 : (ι → ι)(ι → ι → ι) → ι . x9 (λ x10 . 0) (λ x10 x11 . 0)) 0))) (x0 (λ x9 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι) → ι . λ x10 x11 : ι → ι . λ x12 . x3 (λ x13 . Inj0 0) (λ x13 : ((ι → ι)ι → ι) → ι . x10 0) (λ x13 . x12))))(∀ x4 : (ι → ι)ι → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : (((ι → ι) → ι) → ι)ι → ι → ι → ι . x1 (λ x9 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . setsum (x6 (x2 (λ x10 : (ι → ι)(ι → ι → ι) → ι . x1 (λ x11 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x11 x12 . λ x13 : ι → ι . 0) 0 (λ x11 : ι → ι . λ x12 . 0)) 0) (λ x10 : ι → ι . x3 (λ x11 . setsum 0 0) (λ x11 : ((ι → ι)ι → ι) → ι . Inj0 0) (λ x11 . 0))) 0) (λ x9 x10 . λ x11 : ι → ι . Inj1 x10) (x1 (λ x9 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . Inj0 x5) (λ x9 x10 . λ x11 : ι → ι . x7 (λ x12 : (ι → ι) → ι . 0) 0 (setsum (x2 (λ x12 : (ι → ι)(ι → ι → ι) → ι . 0) 0) x10) (x11 (Inj1 0))) 0 (λ x9 : ι → ι . λ x10 . Inj1 0)) (λ x9 : ι → ι . λ x10 . x0 (λ x11 : ι → ι . x9 0) (λ x11 : ((ι → ι)ι → ι) → ι . λ x12 x13 : ι → ι . λ x14 . x14)) = Inj1 0)(∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (ι → ι → ι)ι → ι . ∀ x7 . x1 (λ x9 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x9 x10 . λ x11 : ι → ι . x0 (λ x12 : ι → ι . x12 0) (λ x12 : ((ι → ι)ι → ι) → ι . λ x13 x14 : ι → ι . λ x15 . x14 (Inj0 (x1 (λ x16 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x16 x17 . λ x18 : ι → ι . 0) 0 (λ x16 : ι → ι . λ x17 . 0))))) (Inj1 0) (λ x9 : ι → ι . λ x10 . 0) = x0 (λ x9 : ι → ι . setsum (x2 (λ x10 : (ι → ι)(ι → ι → ι) → ι . Inj0 0) (x6 (λ x10 x11 . x3 (λ x12 . 0) (λ x12 : ((ι → ι)ι → ι) → ι . 0) (λ x12 . 0)) (setsum 0 0))) (x9 (setsum (setsum 0 0) 0))) (λ x9 : ((ι → ι)ι → ι) → ι . λ x10 x11 : ι → ι . λ x12 . setsum (x3 (λ x13 . Inj0 x12) (λ x13 : ((ι → ι)ι → ι) → ι . x11 x12) (λ x13 . Inj1 x12)) 0))(∀ x4 x5 x6 x7 . x0 (λ x9 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι) → ι . λ x10 x11 : ι → ι . λ x12 . setsum (setsum x12 (x1 (λ x13 : (((ι → ι)ι → ι)(ι → ι)ι → ι) → ι . x2 (λ x14 : (ι → ι)(ι → ι → ι) → ι . 0) 0) (λ x13 x14 . λ x15 : ι → ι . x2 (λ x16 : (ι → ι)(ι → ι → ι) → ι . 0) 0) 0 (λ x13 : ι → ι . λ x14 . x11 0))) 0) = Inj0 x5)(∀ x4 : (ι → (ι → ι) → ι)ι → ι → ι → ι . ∀ x5 x6 x7 . x0 (λ x9 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι) → ι . λ x10 x11 : ι → ι . λ x12 . x3 (λ x13 . x13) (λ x13 : ((ι → ι)ι → ι) → ι . 0) (λ x13 . x0 (λ x14 : ι → ι . Inj0 x13) (λ x14 : ((ι → ι)ι → ι) → ι . λ x15 x16 : ι → ι . λ x17 . x3 (λ x18 . x3 (λ x19 . 0) (λ x19 : ((ι → ι)ι → ι) → ι . 0) (λ x19 . 0)) (λ x18 : ((ι → ι)ι → ι) → ι . x17) (λ x18 . x15 0)))) = setsum (x3 (λ x9 . 0) (λ x9 : ((ι → ι)ι → ι) → ι . x9 (λ x10 : ι → ι . λ x11 . Inj0 x7)) (λ x9 . x6)) (x3 (λ x9 . x9) (λ x9 : ((ι → ι)ι → ι) → ι . 0) (λ x9 . 0)))False
type
prop
theory
HF
name
-
proof
PUfTw..
Megalodon
-
proofgold address
TMZvT..
creator
11848 PrGVS../a1570..
owner
11888 PrGVS../bd480..
term root
824fb..