Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : (ι → ι)ι → ι . ∀ x1 : ((((ι → ι → ι) → ι)((ι → ι) → ι) → ι) → ι)ι → ((ι → ι → ι) → ι) → ι . ∀ x2 : (ι → (((ι → ι)ι → ι)ι → ι) → ι)(ι → ((ι → ι) → ι) → ι) → ι . ∀ x3 : ((ι → ι → ι) → ι)((((ι → ι)ι → ι)ι → ι → ι)ι → ι)(((ι → ι) → ι) → ι)ι → ι . (∀ x4 : ι → ι → ι → ι . ∀ x5 : ι → ι → ι → ι → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x3 (λ x9 : ι → ι → ι . 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . x6) (λ x9 : (ι → ι) → ι . setsum x6 0) (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . x3 (λ x11 : ι → ι → ι . 0) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . 0) (λ x11 : (ι → ι) → ι . 0) 0) (λ x9 . λ x10 : (ι → ι) → ι . setsum (x7 0 x9) x6)) = x6)(∀ x4 : ι → ((ι → ι) → ι) → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ((ι → ι) → ι)ι → ι . x3 (λ x9 : ι → ι → ι . x3 (λ x10 : ι → ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . x0 (λ x12 . x9 0 (Inj0 0)) 0) (λ x10 : (ι → ι) → ι . x2 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι . Inj0 (x0 (λ x13 . 0) 0)) (λ x11 . λ x12 : (ι → ι) → ι . Inj0 0)) 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . 0) (λ x9 : (ι → ι) → ι . 0) (x3 (λ x9 : ι → ι → ι . Inj0 (x3 (λ x10 : ι → ι → ι . Inj0 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . Inj0 0) (λ x10 : (ι → ι) → ι . x1 (λ x11 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . 0) 0 (λ x11 : ι → ι → ι . 0)) (Inj0 0))) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . Inj1 (x3 (λ x11 : ι → ι → ι . 0) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . setsum 0 0) (λ x11 : (ι → ι) → ι . x2 (λ x12 . λ x13 : ((ι → ι)ι → ι)ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . 0)) (Inj0 0))) (λ x9 : (ι → ι) → ι . 0) (Inj1 (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . x10 (λ x11 : ι → ι . λ x12 . 0) 0) (λ x9 . λ x10 : (ι → ι) → ι . setsum 0 0)))) = setsum (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . x10 (λ x11 . 0))) (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . x6) (λ x9 . λ x10 : (ι → ι) → ι . Inj1 (Inj0 0))))(∀ x4 x5 x6 . ∀ x7 : ι → ι . x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . x6) = x6)(∀ x4 : ι → ι → ι → ι . ∀ x5 x6 x7 . x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . Inj0 (x3 (λ x11 : ι → ι → ι . setsum (x3 (λ x12 : ι → ι → ι . 0) (λ x12 : ((ι → ι)ι → ι)ι → ι → ι . λ x13 . 0) (λ x12 : (ι → ι) → ι . 0) 0) x7) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . x11 (λ x13 : ι → ι . λ x14 . x11 (λ x15 : ι → ι . λ x16 . 0) 0 0) 0 (Inj0 0)) (λ x11 : (ι → ι) → ι . x9) (Inj1 (Inj0 0)))) (λ x9 . λ x10 : (ι → ι) → ι . setsum 0 (setsum x9 0)) = x6)(∀ x4 : ι → (ι → ι → ι) → ι . ∀ x5 x6 x7 . x1 (λ x9 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . x2 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι . x7) (λ x10 . λ x11 : (ι → ι) → ι . x10)) 0 (λ x9 : ι → ι → ι . setsum 0 (x0 (x3 (λ x10 : ι → ι → ι . x1 (λ x11 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . 0) 0 (λ x11 : ι → ι → ι . 0)) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . x11) (λ x10 : (ι → ι) → ι . x9 0 0)) 0)) = setsum (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . 0) (λ x9 . λ x10 : (ι → ι) → ι . x3 (λ x11 : ι → ι → ι . x2 (λ x12 . λ x13 : ((ι → ι)ι → ι)ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . x2 (λ x14 . λ x15 : ((ι → ι)ι → ι)ι → ι . 0) (λ x14 . λ x15 : (ι → ι) → ι . 0))) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . x2 (λ x13 . λ x14 : ((ι → ι)ι → ι)ι → ι . Inj1 0) (λ x13 . λ x14 : (ι → ι) → ι . Inj1 0)) (λ x11 : (ι → ι) → ι . 0) (x2 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι . Inj0 0)))) 0)(∀ x4 x5 . ∀ x6 : (ι → ι) → ι . ∀ x7 . x1 (λ x9 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . x2 (λ x10 . λ x11 : ((ι → ι)ι → ι)ι → ι . x2 (λ x12 . λ x13 : ((ι → ι)ι → ι)ι → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι . setsum x12 (setsum 0 0))) (λ x10 . λ x11 : (ι → ι) → ι . setsum (x2 (λ x12 . λ x13 : ((ι → ι)ι → ι)ι → ι . setsum 0 0) (λ x12 . λ x13 : (ι → ι) → ι . x0 (λ x14 . 0) 0)) 0)) x5 (λ x9 : ι → ι → ι . Inj0 (Inj1 (Inj0 0))) = setsum 0 (Inj1 x5))(∀ x4 x5 x6 x7 . x0 (λ x9 . 0) x7 = setsum (setsum 0 0) (setsum (x2 (λ x9 . λ x10 : ((ι → ι)ι → ι)ι → ι . setsum (Inj0 0) (setsum 0 0)) (λ x9 . λ x10 : (ι → ι) → ι . 0)) x5))(∀ x4 . ∀ x5 : (ι → ι → ι → ι)((ι → ι)ι → ι) → ι . ∀ x6 x7 . x0 (λ x9 . x1 (λ x10 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . 0) x6 (λ x10 : ι → ι → ι . setsum 0 x9)) (setsum (x1 (λ x9 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . x6) (x3 (λ x9 : ι → ι → ι . Inj1 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . setsum 0 0) (λ x9 : (ι → ι) → ι . x3 (λ x10 : ι → ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0) (λ x10 : (ι → ι) → ι . 0) 0) (setsum 0 0)) (λ x9 : ι → ι → ι . 0)) 0) = x1 (λ x9 : ((ι → ι → ι) → ι)((ι → ι) → ι) → ι . setsum (x3 (λ x10 : ι → ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0) (λ x10 : (ι → ι) → ι . setsum (x2 (λ x11 . λ x12 : ((ι → ι)ι → ι)ι → ι . 0) (λ x11 . λ x12 : (ι → ι) → ι . 0)) 0) (x5 (λ x10 x11 x12 . x11) (λ x10 : ι → ι . λ x11 . 0))) (Inj1 (Inj0 0))) (Inj1 0) (λ x9 : ι → ι → ι . Inj0 (setsum x7 (x0 (λ x10 . x6) (Inj0 0)))))False
as obj
-
as prop
71531..
theory
HF
stx
b867c..
address
TMYLG..