Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrCit..
/
01659..
PUMsH..
/
d5ded..
vout
PrCit..
/
bc048..
4.77 bars
TMbeX..
/
7b6a9..
ownership of
e3dc1..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPHu..
/
08480..
ownership of
b1412..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMPqS..
/
6ee69..
ownership of
1f164..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMcYu..
/
21b95..
ownership of
2189d..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMasb..
/
3ef32..
ownership of
4b8cc..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
TMVpv..
/
6528f..
ownership of
e15ec..
as prop with payaddr
Pr4zB..
rights free controlledby
Pr4zB..
upto 0
PULfG..
/
738ec..
doc published by
Pr4zB..
Param
nat_p
nat_p
:
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Definition
inj
inj
:=
λ x0 x1 .
λ x2 :
ι → ι
.
and
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
Definition
atleastp
atleastp
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
inj
x0
x1
x3
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Param
add_nat
add_nat
:
ι
→
ι
→
ι
Param
binunion
binunion
:
ι
→
ι
→
ι
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Known
dneg
dneg
:
∀ x0 : ο .
not
(
not
x0
)
⟶
x0
Known
48e0f..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
or
(
atleastp
x1
x0
)
(
atleastp
(
ordsucc
x0
)
x1
)
Known
4fb58..
Pigeonhole_not_atleastp_ordsucc
:
∀ x0 .
nat_p
x0
⟶
not
(
atleastp
(
ordsucc
x0
)
x0
)
Known
add_nat_p
add_nat_p
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
add_nat
x0
x1
)
Known
atleastp_tra
atleastp_tra
:
∀ x0 x1 x2 .
atleastp
x0
x1
⟶
atleastp
x1
x2
⟶
atleastp
x0
x2
Param
setsum
setsum
:
ι
→
ι
→
ι
Known
c558f..
:
∀ x0 x1 x2 x3 .
atleastp
x0
x2
⟶
atleastp
x1
x3
⟶
atleastp
(
binunion
x0
x1
)
(
setsum
x2
x3
)
Param
equip
equip
:
ι
→
ι
→
ο
Known
equip_atleastp
equip_atleastp
:
∀ x0 x1 .
equip
x0
x1
⟶
atleastp
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
c88e0..
:
∀ x0 x1 x2 x3 .
nat_p
x0
⟶
nat_p
x1
⟶
equip
x0
x2
⟶
equip
x1
x3
⟶
equip
(
add_nat
x0
x1
)
(
setsum
x2
x3
)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Theorem
4b8cc..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
∀ x2 x3 .
atleastp
(
ordsucc
(
add_nat
x0
x1
)
)
(
binunion
x2
x3
)
⟶
or
(
atleastp
(
ordsucc
x0
)
x2
)
(
atleastp
(
ordsucc
x1
)
x3
)
(proof)
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Definition
TwoRamseyProp_atleastp
:=
λ x0 x1 x2 .
∀ x3 :
ι →
ι → ο
.
(
∀ x4 x5 .
x3
x4
x5
⟶
x3
x5
x4
)
⟶
or
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x0
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
x3
x6
x7
)
)
⟶
x4
)
⟶
x4
)
(
∀ x4 : ο .
(
∀ x5 .
and
(
x5
⊆
x2
)
(
and
(
atleastp
x1
x5
)
(
∀ x6 .
x6
∈
x5
⟶
∀ x7 .
x7
∈
x5
⟶
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
⟶
not
(
x3
x6
x7
)
)
)
⟶
x4
)
⟶
x4
)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
SepE1
SepE1
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x2
∈
x0
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Param
Sing
Sing
:
ι
→
ι
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
1dc5a..
:
∀ x0 x1 x2 .
nIn
x2
x1
⟶
atleastp
x0
x1
⟶
atleastp
(
ordsucc
x0
)
(
binunion
x1
(
Sing
x2
)
)
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
SepE2
SepE2
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
x1
x2
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
nat_ordsucc
nat_ordsucc
:
∀ x0 .
nat_p
x0
⟶
nat_p
(
ordsucc
x0
)
Theorem
1f164..
:
∀ x0 x1 x2 x3 .
nat_p
x2
⟶
nat_p
x3
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
x1
(
ordsucc
x2
)
⟶
TwoRamseyProp_atleastp
x0
(
ordsucc
x1
)
(
ordsucc
x3
)
⟶
TwoRamseyProp_atleastp
(
ordsucc
x0
)
(
ordsucc
x1
)
(
ordsucc
(
ordsucc
(
add_nat
x2
x3
)
)
)
(proof)
Param
TwoRamseyProp
TwoRamseyProp
:
ι
→
ι
→
ι
→
ο
Definition
u1
:=
1
Definition
u2
:=
ordsucc
u1
Definition
u3
:=
ordsucc
u2
Definition
u4
:=
ordsucc
u3
Definition
u5
:=
ordsucc
u4
Definition
u6
:=
ordsucc
u5
Definition
u7
:=
ordsucc
u6
Definition
u8
:=
ordsucc
u7
Definition
u9
:=
ordsucc
u8
Definition
u10
:=
ordsucc
u9
Definition
u11
:=
ordsucc
u10
Definition
u12
:=
ordsucc
u11
Definition
u13
:=
ordsucc
u12
Definition
u14
:=
ordsucc
u13
Definition
u15
:=
ordsucc
u14
Definition
u16
:=
ordsucc
u15
Definition
u17
:=
ordsucc
u16
Definition
u18
:=
ordsucc
u17
Known
b8b19..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp
x0
x1
x2
Known
1521b..
:
add_nat
8
8
=
16
Known
nat_8
nat_8
:
nat_p
8
Known
42643..
:
∀ x0 x1 x2 .
TwoRamseyProp_atleastp
x0
x1
x2
⟶
TwoRamseyProp_atleastp
x1
x0
x2
Known
TwoRamseyProp_atleastp_atleastp
:
∀ x0 x1 x2 x3 x4 .
TwoRamseyProp
x0
x2
x4
⟶
atleastp
x1
x0
⟶
atleastp
x3
x2
⟶
TwoRamseyProp_atleastp
x1
x3
x4
Known
TwoRamseyProp_3_4_9
TwoRamseyProp_3_4_9
:
TwoRamseyProp
3
4
9
Known
atleastp_ref
:
∀ x0 .
atleastp
x0
x0
Theorem
TwoRamseyProp_4_4_18
TwoRamseyProp_4_4_18
:
TwoRamseyProp
4
4
18
(proof)