Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr9pj../b73f9..
PUX88../e4b8f..
vout
Pr9pj../a5ce0.. 0.00 bars
TMQCN../c0dc4.. ownership of 54331.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMSA7../e2416.. ownership of 092f7.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUQog../b70f5.. doc published by Pr4zB..
Param apap : ιιι
Param notnot : οο
Definition FalseFalse := ∀ x0 : ο . x0
Known 3c6b1.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x2)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x2 x10 x11)not (x8 x9 x2 x12 x13)not (x8 x9 x2 x14 x15)not (x8 x9 x2 x16 x17)not (x8 x9 x2 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False
Known f8a5d.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x3)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x3 x10 x11)not (x8 x9 x3 x12 x13)not (x8 x9 x3 x14 x15)not (x8 x9 x3 x16 x17)not (x8 x9 x3 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False
Known 37836.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 x4 x5 x6 . x0 x1∀ x7 : ι → ι . (∀ x8 . x0 x8∀ x9 . x0 x9x0 (ap (x7 x8) x9))(∀ x8 . x0 x8∀ x9 . x0 x9ap (x7 x8) (ap (x7 x8) x9) = x9)(∀ x8 . x0 x8ap (x7 x8) x1 = x4)∀ x8 : ι → ι → ι → ι → ο . (∀ x9 x10 x11 x12 . x0 x9x0 x10x0 x11x0 x12x8 x9 x10 x11 x12x8 x9 (ap (x7 x9) x10) x11 (ap (x7 x11) x12))(∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x1 x10 x11)not (x8 x9 x1 x12 x13)not (x8 x9 x1 x14 x15)not (x8 x9 x1 x16 x17)not (x8 x9 x1 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False)∀ x9 . x0 x9∀ x10 . x0 x10∀ x11 . x0 x11∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19not (x8 x9 x4 x10 x11)not (x8 x9 x4 x12 x13)not (x8 x9 x4 x14 x15)not (x8 x9 x4 x16 x17)not (x8 x9 x4 x18 x19)not (x8 x10 x11 x12 x13)not (x8 x10 x11 x14 x15)not (x8 x10 x11 x16 x17)not (x8 x10 x11 x18 x19)not (x8 x12 x13 x14 x15)not (x8 x12 x13 x16 x17)not (x8 x12 x13 x18 x19)not (x8 x14 x15 x16 x17)not (x8 x14 x15 x18 x19)not (x8 x16 x17 x18 x19)False
Theorem 54331.. : ∀ x0 x1 : ι → ο . ∀ x2 x3 x4 x5 x6 x7 . (∀ x8 : ι → ο . x8 x2x8 x3x8 x4x8 x5∀ x9 . x1 x9x8 x9)x0 x2∀ x8 x9 x10 : ι → ι . (∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x8 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x8 x11) (ap (x8 x11) x12) = x12)(∀ x11 . x0 x11ap (x8 x11) x2 = x3)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x9 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x9 x11) (ap (x9 x11) x12) = x12)(∀ x11 . x0 x11ap (x9 x11) x2 = x4)(∀ x11 . x0 x11∀ x12 . x0 x12x0 (ap (x10 x11) x12))(∀ x11 . x0 x11∀ x12 . x0 x12ap (x10 x11) (ap (x10 x11) x12) = x12)(∀ x11 . x0 x11ap (x10 x11) x2 = x5)∀ x11 : ι → ι → ι → ι → ο . (∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x8 x12) x13) x14 (ap (x8 x14) x15))(∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x9 x12) x13) x14 (ap (x9 x14) x15))(∀ x12 x13 x14 x15 . x0 x12x0 x13x0 x14x0 x15x11 x12 x13 x14 x15x11 x12 (ap (x10 x12) x13) x14 (ap (x10 x14) x15))(∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22not (x11 x12 x2 x13 x14)not (x11 x12 x2 x15 x16)not (x11 x12 x2 x17 x18)not (x11 x12 x2 x19 x20)not (x11 x12 x2 x21 x22)not (x11 x13 x14 x15 x16)not (x11 x13 x14 x17 x18)not (x11 x13 x14 x19 x20)not (x11 x13 x14 x21 x22)not (x11 x15 x16 x17 x18)not (x11 x15 x16 x19 x20)not (x11 x15 x16 x21 x22)not (x11 x17 x18 x19 x20)not (x11 x17 x18 x21 x22)not (x11 x19 x20 x21 x22)False)∀ x12 . x0 x12∀ x13 . x0 x13∀ x14 . x0 x14∀ x15 . x0 x15∀ x16 . x0 x16∀ x17 . x0 x17∀ x18 . x0 x18∀ x19 . x0 x19∀ x20 . x0 x20∀ x21 . x0 x21∀ x22 . x0 x22∀ x23 . x1 x23not (x11 x12 x23 x13 x14)not (x11 x12 x23 x15 x16)not (x11 x12 x23 x17 x18)not (x11 x12 x23 x19 x20)not (x11 x12 x23 x21 x22)not (x11 x13 x14 x15 x16)not (x11 x13 x14 x17 x18)not (x11 x13 x14 x19 x20)not (x11 x13 x14 x21 x22)not (x11 x15 x16 x17 x18)not (x11 x15 x16 x19 x20)not (x11 x15 x16 x21 x22)not (x11 x17 x18 x19 x20)not (x11 x17 x18 x21 x22)not (x11 x19 x20 x21 x22)False (proof)