Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrPP6..
/
83b38..
PUKU8..
/
3c33f..
vout
PrPP6..
/
cf7c8..
0.01 bars
TMLqi..
/
56741..
ownership of
5fabd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFPi..
/
08301..
ownership of
14608..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJj9..
/
0a0f8..
ownership of
97a13..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMd9v..
/
9ccd9..
ownership of
3232a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRNo..
/
1d88d..
ownership of
0d1f9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZu5..
/
74383..
ownership of
987c5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMaK..
/
05fab..
ownership of
b92db..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUcD..
/
43a07..
ownership of
7b56e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYXn..
/
0ebee..
ownership of
b4f65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMoA..
/
58db6..
ownership of
e958a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSUS..
/
e747c..
ownership of
eb06e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPhc..
/
c6b06..
ownership of
0bba6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJpm..
/
a800d..
ownership of
fa87a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEz8..
/
cf3ca..
ownership of
3b226..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRsw..
/
2142f..
ownership of
278ed..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLAq..
/
d437e..
ownership of
31bbd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLzT..
/
71414..
ownership of
98ce3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMNu..
/
64495..
ownership of
7ce73..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLpZ..
/
41d7c..
ownership of
1dc86..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNew..
/
7432e..
ownership of
606e0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMV9q..
/
31f32..
ownership of
b9ca8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUgK..
/
6085b..
ownership of
96914..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWc4..
/
7f87c..
ownership of
db322..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUDE..
/
84f1c..
ownership of
30f45..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHSz..
/
3b55c..
ownership of
e1455..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUbS..
/
23655..
ownership of
eadcd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPPL..
/
a9ab1..
ownership of
c8dd9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVCB..
/
2226a..
ownership of
cca45..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUPV..
/
a0064..
ownership of
9cb52..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXko..
/
b423c..
ownership of
032ea..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ9J..
/
24a62..
ownership of
18470..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa9D..
/
342a8..
ownership of
f9743..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa1X..
/
b74f1..
ownership of
f5a07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVur..
/
7f146..
ownership of
74b1b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJf5..
/
fbd5d..
ownership of
47397..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSny..
/
94e86..
ownership of
8ae75..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTKp..
/
6b573..
ownership of
4e105..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdXz..
/
63f38..
ownership of
01402..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX2o..
/
b3160..
ownership of
64de1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFU6..
/
bb588..
ownership of
ab73c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLrw..
/
ddbb5..
ownership of
80b57..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXJa..
/
663b0..
ownership of
2cdc5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMawQ..
/
ae379..
ownership of
c0b78..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHXD..
/
c6985..
ownership of
593fa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMKg..
/
bdebe..
ownership of
5dcf0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKR5..
/
edd27..
ownership of
a26d7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUVF4..
/
f6827..
doc published by
PrGxv..
Param
a842e..
:
ι
→
(
ι
→
ι
) →
ι
Param
4a7ef..
:
ι
Definition
Subq
:=
λ x0 x1 .
∀ x2 .
prim1
x2
x0
⟶
prim1
x2
x1
Known
3f849..
:
∀ x0 .
Subq
x0
4a7ef..
⟶
x0
=
4a7ef..
Known
9b5af..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
a842e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
prim1
x2
(
x1
x4
)
⟶
x3
)
⟶
x3
Definition
False
:=
∀ x0 : ο .
x0
Known
FalseE
:
False
⟶
∀ x0 : ο .
x0
Definition
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
:=
λ x0 x1 .
not
(
prim1
x0
x1
)
Known
dcd83..
:
∀ x0 .
nIn
x0
4a7ef..
Theorem
5dcf0..
:
∀ x0 :
ι → ι
.
a842e..
4a7ef..
x0
=
4a7ef..
(proof)
Param
80242..
:
ι
→
ο
Param
and
:
ο
→
ο
→
ο
Param
099f3..
:
ι
→
ι
→
ο
Definition
02b90..
:=
λ x0 x1 .
and
(
and
(
∀ x2 .
prim1
x2
x0
⟶
80242..
x2
)
(
∀ x2 .
prim1
x2
x1
⟶
80242..
x2
)
)
(
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x1
⟶
099f3..
x2
x3
)
Known
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Theorem
c0b78..
:
∀ x0 .
(
∀ x1 .
prim1
x1
x0
⟶
80242..
x1
)
⟶
02b90..
x0
4a7ef..
(proof)
Theorem
80b57..
:
∀ x0 .
(
∀ x1 .
prim1
x1
x0
⟶
80242..
x1
)
⟶
02b90..
4a7ef..
x0
(proof)
Theorem
64de1..
:
02b90..
4a7ef..
4a7ef..
(proof)
Param
02a50..
:
ι
→
ι
→
ι
Param
e4431..
:
ι
→
ι
Param
4ae4a..
:
ι
→
ι
Param
0ac37..
:
ι
→
ι
→
ι
Param
SNoEq_
:
ι
→
ι
→
ι
→
ο
Known
9ecaa..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 : ο .
(
80242..
(
02a50..
x0
x1
)
⟶
prim1
(
e4431..
(
02a50..
x0
x1
)
)
(
4ae4a..
(
0ac37..
(
a842e..
x0
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
(
a842e..
x1
(
λ x3 .
4ae4a..
(
e4431..
x3
)
)
)
)
)
⟶
(
∀ x3 .
prim1
x3
x0
⟶
099f3..
x3
(
02a50..
x0
x1
)
)
⟶
(
∀ x3 .
prim1
x3
x1
⟶
099f3..
(
02a50..
x0
x1
)
x3
)
⟶
(
∀ x3 .
80242..
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
x3
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
x3
x4
)
⟶
and
(
Subq
(
e4431..
(
02a50..
x0
x1
)
)
(
e4431..
x3
)
)
(
SNoEq_
(
e4431..
(
02a50..
x0
x1
)
)
(
02a50..
x0
x1
)
x3
)
)
⟶
x2
)
⟶
x2
Known
019ee..
:
∀ x0 .
0ac37..
4a7ef..
x0
=
x0
Known
2b8be..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e4431..
x0
=
e4431..
x1
⟶
SNoEq_
(
e4431..
x0
)
x0
x1
⟶
x0
=
x1
Known
ebb60..
:
80242..
4a7ef..
Known
ab02c..
:
e4431..
4a7ef..
=
4a7ef..
Param
iff
:
ο
→
ο
→
ο
Known
SNoEq_I
:
∀ x0 x1 x2 .
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
prim1
x3
x1
)
(
prim1
x3
x2
)
)
⟶
SNoEq_
x0
x1
x2
Known
2911f..
:
∀ x0 .
prim1
x0
(
4ae4a..
4a7ef..
)
⟶
∀ x1 :
ι → ο
.
x1
4a7ef..
⟶
x1
x0
Theorem
4e105..
:
02a50..
4a7ef..
4a7ef..
=
4a7ef..
(proof)
Param
23e07..
:
ι
→
ι
Known
set_ext
:
∀ x0 x1 .
Subq
x0
x1
⟶
Subq
x1
x0
⟶
x0
=
x1
Known
cbec9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
x2
)
⟶
x2
Known
c8ed0..
:
80242..
(
4ae4a..
4a7ef..
)
Param
ordinal
:
ι
→
ο
Known
aab4f..
:
∀ x0 .
ordinal
x0
⟶
e4431..
x0
=
x0
Param
ba9d8..
:
ι
→
ο
Known
f3fb5..
:
∀ x0 .
ba9d8..
x0
⟶
ordinal
x0
Known
3db81..
:
ba9d8..
(
4ae4a..
4a7ef..
)
Known
f1083..
:
prim1
4a7ef..
(
4ae4a..
4a7ef..
)
Known
f5194..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x1
x0
⟶
prim1
x1
(
23e07..
x0
)
Known
44eea..
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
prim1
x1
x0
⟶
099f3..
x1
x0
Theorem
47397..
:
23e07..
(
4ae4a..
4a7ef..
)
=
4ae4a..
4a7ef..
(proof)
Param
5246e..
:
ι
→
ι
Known
44ec0..
:
∀ x0 .
ordinal
x0
⟶
5246e..
x0
=
4a7ef..
Theorem
f5a07..
:
5246e..
(
4ae4a..
4a7ef..
)
=
4a7ef..
(proof)
Param
bc82c..
:
ι
→
ι
→
ι
Known
b71d0..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
80242..
(
bc82c..
x0
x1
)
Theorem
18470..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
(proof)
Param
f4dc0..
:
ι
→
ι
Known
706f7..
:
∀ x0 .
80242..
x0
⟶
80242..
(
f4dc0..
x0
)
Theorem
9cb52..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
(
bc82c..
x0
(
bc82c..
x1
(
f4dc0..
x2
)
)
)
(proof)
Known
58c5d..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
f4dc0..
(
bc82c..
x0
x1
)
=
bc82c..
(
f4dc0..
x0
)
(
f4dc0..
x1
)
Theorem
c8dd9..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
f4dc0..
(
bc82c..
x0
(
bc82c..
x1
x2
)
)
=
bc82c..
(
f4dc0..
x0
)
(
bc82c..
(
f4dc0..
x1
)
(
f4dc0..
x2
)
)
(proof)
Known
368c5..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
(
bc82c..
x0
x1
)
x2
Known
8782d..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
Theorem
e1455..
:
∀ x0 x1 x2 x3 x4 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x3
)
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x1
x4
)
)
(
bc82c..
x2
(
bc82c..
x3
x4
)
)
(proof)
Known
5144e..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
x2
(
bc82c..
x0
x1
)
Theorem
db322..
:
∀ x0 x1 x2 x3 x4 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
099f3..
(
bc82c..
x1
x0
)
(
bc82c..
x2
x3
)
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x4
x1
)
)
(
bc82c..
x2
(
bc82c..
x3
x4
)
)
(proof)
Known
08d14..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
(
bc82c..
x0
x1
)
(
bc82c..
x2
x1
)
⟶
099f3..
x0
x2
Known
5c481..
:
∀ x0 .
80242..
x0
⟶
bc82c..
(
f4dc0..
x0
)
x0
=
4a7ef..
Known
97325..
:
∀ x0 .
80242..
x0
⟶
bc82c..
x0
4a7ef..
=
x0
Theorem
b9ca8..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
(
bc82c..
x2
x1
)
⟶
099f3..
(
bc82c..
x0
(
f4dc0..
x1
)
)
x2
(proof)
Theorem
1dc86..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
(
bc82c..
x2
x1
)
x0
⟶
099f3..
x2
(
bc82c..
x0
(
f4dc0..
x1
)
)
(proof)
Known
f3bd7..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
bc82c..
x0
x1
=
bc82c..
x1
x0
Theorem
98ce3..
:
∀ x0 x1 x2 x3 x4 x5 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
x4
⟶
80242..
x5
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x1
x5
)
)
(
bc82c..
x3
(
bc82c..
x4
x2
)
)
⟶
099f3..
(
bc82c..
x0
(
bc82c..
x1
(
f4dc0..
x2
)
)
)
(
bc82c..
x3
(
bc82c..
x4
(
f4dc0..
x5
)
)
)
(proof)
Param
e6316..
:
ι
→
ι
→
ι
Known
ed5b9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
∀ x2 : ο .
(
80242..
(
e6316..
x0
x1
)
⟶
(
∀ x3 .
prim1
x3
(
23e07..
x0
)
⟶
∀ x4 .
prim1
x4
(
23e07..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
5246e..
x0
)
⟶
∀ x4 .
prim1
x4
(
5246e..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
23e07..
x0
)
⟶
∀ x4 .
prim1
x4
(
5246e..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
)
⟶
(
∀ x3 .
prim1
x3
(
5246e..
x0
)
⟶
∀ x4 .
prim1
x4
(
23e07..
x1
)
⟶
099f3..
(
bc82c..
(
e6316..
x0
x1
)
(
e6316..
x3
x4
)
)
(
bc82c..
(
e6316..
x3
x1
)
(
e6316..
x0
x4
)
)
)
⟶
x2
)
⟶
x2
Theorem
278ed..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
80242..
(
e6316..
x0
x1
)
(proof)
Theorem
fa87a..
:
∀ x0 x1 x2 x3 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
80242..
x3
⟶
80242..
(
bc82c..
(
e6316..
x2
x1
)
(
bc82c..
(
e6316..
x0
x3
)
(
f4dc0..
(
e6316..
x2
x3
)
)
)
)
(proof)
Known
ca858..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
(
∀ x5 .
prim1
x5
x3
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
x4
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
e6316..
x0
x1
=
02a50..
x3
x4
⟶
x2
)
⟶
x2
Known
e76d1..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
∀ x2 : ο .
(
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
x2
)
⟶
x2
Known
c7cc7..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
099f3..
x0
x1
⟶
099f3..
x1
x2
⟶
099f3..
x0
x2
Theorem
eb06e..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
∀ x2 : ο .
(
∀ x3 x4 .
02b90..
x3
x4
⟶
(
∀ x5 .
prim1
x5
x3
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x3
)
⟶
(
∀ x5 .
prim1
x5
x4
⟶
∀ x6 : ο .
(
∀ x7 .
prim1
x7
(
23e07..
x0
)
⟶
∀ x8 .
prim1
x8
(
5246e..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
(
∀ x7 .
prim1
x7
(
5246e..
x0
)
⟶
∀ x8 .
prim1
x8
(
23e07..
x1
)
⟶
x5
=
bc82c..
(
e6316..
x7
x1
)
(
bc82c..
(
e6316..
x0
x8
)
(
f4dc0..
(
e6316..
x7
x8
)
)
)
⟶
x6
)
⟶
x6
)
⟶
(
∀ x5 .
prim1
x5
(
23e07..
x0
)
⟶
∀ x6 .
prim1
x6
(
5246e..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
(
∀ x5 .
prim1
x5
(
5246e..
x0
)
⟶
∀ x6 .
prim1
x6
(
23e07..
x1
)
⟶
prim1
(
bc82c..
(
e6316..
x5
x1
)
(
bc82c..
(
e6316..
x0
x6
)
(
f4dc0..
(
e6316..
x5
x6
)
)
)
)
x4
)
⟶
e6316..
x0
x1
=
02a50..
x3
x4
⟶
x2
)
⟶
x2
(proof)
Theorem
b4f65..
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 .
(
∀ x8 .
prim1
x8
x6
⟶
∀ x9 : ο .
(
∀ x10 .
prim1
x10
x2
⟶
∀ x11 .
prim1
x11
x3
⟶
x8
=
bc82c..
(
e6316..
x10
x1
)
(
bc82c..
(
e6316..
x0
x11
)
(
f4dc0..
(
e6316..
x10
x11
)
)
)
⟶
x9
)
⟶
(
∀ x10 .
prim1
x10
x4
⟶
∀ x11 .
prim1
x11
x5
⟶
x8
=
bc82c..
(
e6316..
x10
x1
)
(
bc82c..
(
e6316..
x0
x11
)
(
f4dc0..
(
e6316..
x10
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
prim1
x8
x2
⟶
∀ x9 .
prim1
x9
x3
⟶
prim1
(
bc82c..
(
e6316..
x8
x1
)
(
bc82c..
(
e6316..
x0
x9
)
(
f4dc0..
(
e6316..
x8
x9
)
)
)
)
x7
)
⟶
(
∀ x8 .
prim1
x8
x4
⟶
∀ x9 .
prim1
x9
x5
⟶
prim1
(
bc82c..
(
e6316..
x8
x1
)
(
bc82c..
(
e6316..
x0
x9
)
(
f4dc0..
(
e6316..
x8
x9
)
)
)
)
x7
)
⟶
Subq
x6
x7
(proof)
Known
bf919..
:
5246e..
4a7ef..
=
4a7ef..
Known
3e9e2..
:
23e07..
4a7ef..
=
4a7ef..
Theorem
b92db..
:
∀ x0 .
80242..
x0
⟶
e6316..
x0
4a7ef..
=
4a7ef..
(proof)
Param
56ded..
:
ι
→
ι
Known
5ccff..
:
∀ x0 :
ι → ο
.
(
∀ x1 .
80242..
x1
⟶
(
∀ x2 .
prim1
x2
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x2
)
⟶
x0
x1
)
⟶
∀ x1 .
80242..
x1
⟶
x0
x1
Known
f6a2d..
:
∀ x0 .
80242..
x0
⟶
x0
=
02a50..
(
23e07..
x0
)
(
5246e..
x0
)
Known
22361..
:
∀ x0 x1 x2 x3 .
02b90..
x0
x1
⟶
02b90..
x2
x3
⟶
(
∀ x4 .
prim1
x4
x0
⟶
099f3..
x4
(
02a50..
x2
x3
)
)
⟶
(
∀ x4 .
prim1
x4
x1
⟶
099f3..
(
02a50..
x2
x3
)
x4
)
⟶
(
∀ x4 .
prim1
x4
x2
⟶
099f3..
x4
(
02a50..
x0
x1
)
)
⟶
(
∀ x4 .
prim1
x4
x3
⟶
099f3..
(
02a50..
x0
x1
)
x4
)
⟶
02a50..
x0
x1
=
02a50..
x2
x3
Known
23b01..
:
∀ x0 .
80242..
x0
⟶
02b90..
(
23e07..
x0
)
(
5246e..
x0
)
Known
0888b..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x0
⟶
099f3..
x2
(
02a50..
x0
x1
)
Known
b6795..
:
f4dc0..
4a7ef..
=
4a7ef..
Known
63df9..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
23e07..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Known
9c8cc..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
∀ x2 .
prim1
x2
x1
⟶
099f3..
(
02a50..
x0
x1
)
x2
Known
54843..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
prim1
x1
(
5246e..
x0
)
⟶
prim1
x1
(
56ded..
(
e4431..
x0
)
)
Theorem
0d1f9..
:
∀ x0 .
80242..
x0
⟶
e6316..
x0
(
4ae4a..
4a7ef..
)
=
x0
(proof)
Known
9ec10..
:
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
x0
x3
x2
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x1
x3
)
⟶
(
∀ x3 .
prim1
x3
(
56ded..
(
e4431..
x1
)
)
⟶
∀ x4 .
prim1
x4
(
56ded..
(
e4431..
x2
)
)
⟶
x0
x3
x4
)
⟶
x0
x1
x2
)
⟶
∀ x1 x2 .
80242..
x1
⟶
80242..
x2
⟶
x0
x1
x2
Known
eb5ba..
:
∀ x0 x1 x2 .
80242..
x0
⟶
80242..
x1
⟶
80242..
x2
⟶
bc82c..
x0
(
bc82c..
x1
x2
)
=
bc82c..
x1
(
bc82c..
x0
x2
)
Theorem
97a13..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e6316..
x0
x1
=
e6316..
x1
x0
(proof)
Param
94f9e..
:
ι
→
(
ι
→
ι
) →
ι
Known
696c0..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
prim1
(
x1
x2
)
(
94f9e..
x0
x1
)
Known
8948a..
:
∀ x0 .
80242..
x0
⟶
f4dc0..
(
f4dc0..
x0
)
=
x0
Known
18a76..
:
∀ x0 .
80242..
x0
⟶
∀ x1 .
80242..
x1
⟶
prim1
(
e4431..
x1
)
(
e4431..
x0
)
⟶
099f3..
x0
x1
⟶
prim1
x1
(
5246e..
x0
)
Known
15454..
:
∀ x0 .
80242..
x0
⟶
e4431..
(
f4dc0..
x0
)
=
e4431..
x0
Known
26c90..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
(
f4dc0..
x1
)
⟶
099f3..
x1
(
f4dc0..
x0
)
Known
d4781..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
(
f4dc0..
x0
)
x1
⟶
099f3..
(
f4dc0..
x1
)
x0
Known
8c6f6..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
(
94f9e..
x0
x1
)
⟶
∀ x3 : ο .
(
∀ x4 .
prim1
x4
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
4d4af..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
099f3..
x0
x1
⟶
099f3..
(
f4dc0..
x1
)
(
f4dc0..
x0
)
Known
3cd4e..
:
∀ x0 x1 .
02b90..
x0
x1
⟶
f4dc0..
(
02a50..
x0
x1
)
=
02a50..
(
94f9e..
x1
f4dc0..
)
(
94f9e..
x0
f4dc0..
)
Theorem
5fabd..
:
∀ x0 x1 .
80242..
x0
⟶
80242..
x1
⟶
e6316..
(
f4dc0..
x0
)
x1
=
f4dc0..
(
e6316..
x0
x1
)
(proof)