Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrGh2../cf83c..
PUMxM../0bad2..
vout
PrGh2../fafe3.. 0.37 bars
TMJAw../29f81.. ownership of 4281b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJyb../5f288.. ownership of 2285d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLmT../c60ea.. ownership of 8ae2a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TML1b../99599.. ownership of 2bef5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVsS../5408a.. ownership of 002ee.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFSe../52b79.. ownership of 15e47.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYJb../0a541.. ownership of 5604f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdhN../28dc9.. ownership of df899.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMc3q../519a9.. ownership of b5da2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZZQ../a27bd.. ownership of 1f793.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTjk../c0206.. ownership of d3646.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRcm../197df.. ownership of 703b9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGgB../5bb1b.. ownership of 4e15c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQrf../00f0b.. ownership of 96463.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSYF../282eb.. ownership of 6694e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYh4../9dc7d.. ownership of 0741f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNtR../4f45a.. ownership of 33118.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbsY../90fdd.. ownership of 24852.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcC1../b9576.. ownership of 43ba5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQ2h../392c4.. ownership of 63230.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSW5../0901c.. ownership of ecfb5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZok../809bd.. ownership of 16888.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRwd../dd444.. ownership of c59b3.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNdn../64e95.. ownership of d9ae8.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPG2../99dbf.. ownership of 32cb8.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdT4../536f7.. ownership of 527cc.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYgp../b48e6.. ownership of 1045a.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJeK../7cd15.. ownership of 21926.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNTK../a910c.. ownership of 7eedb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbv7../0119b.. ownership of 61714.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMV6v../d1d90.. ownership of 1037d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLFL../0277c.. ownership of e747e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXcJ../f28dc.. ownership of 345f8.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNuh../3ef05.. ownership of 35501.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJNR../c7dec.. ownership of 6aa34.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMboL../13cc7.. ownership of 1bcb0.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVrE../6ded3.. ownership of 14d11.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTyp../74976.. ownership of 8c56c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKkP../c0f5b.. ownership of 21e78.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGNq../224c8.. ownership of 2d427.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHXk../13630.. ownership of c28ea.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcGs../51473.. ownership of 2c4f2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXqt../c4ae0.. ownership of 3c078.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbUm../ea6ae.. ownership of 7e800.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLHA../b4ee5.. ownership of 370ea.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVb8../239ce.. ownership of bf778.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXeU../e91f1.. ownership of 4cd1b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXCP../5cac0.. ownership of b6fb5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMF8p../4973a.. ownership of 80cab.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbnM../0881d.. ownership of 64829.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHVw../e641e.. ownership of fa807.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTFq../1e84a.. ownership of 31dcb.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFnT../c23c0.. ownership of f0f28.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcre../99dfb.. ownership of bc6a6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWMj../184a7.. ownership of 6f81c.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMd69../607c7.. ownership of 9fcad.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMN8k../cb8a7.. ownership of cf46e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSdK../17bd4.. ownership of a85ad.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJ8z../29f99.. ownership of a4533.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKDL../29401.. ownership of d2761.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPjB../a4b48.. ownership of 02b99.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMS7B../65803.. ownership of daf35.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTkc../a8cca.. ownership of 417a6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMVfD../f19d3.. ownership of 4bd58.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTXL../dd03d.. ownership of 8f137.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQa9../a610b.. ownership of 47e19.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHfK../e9842.. ownership of e8468.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFAF../1b533.. ownership of 57735.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRq4../5cd4c.. ownership of db622.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXwS../dfcd6.. ownership of c2418.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSQZ../ec126.. ownership of bcf11.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQWL../73e3d.. ownership of c5fd4.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLy3../b0509.. ownership of d9a97.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdf9../03512.. ownership of 40576.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTyK../d82be.. ownership of 2bad6.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFGk../062eb.. ownership of 3e498.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcy1../ed59f.. ownership of df89e.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZAi../1fae0.. ownership of 84a84.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMEvX../7e730.. ownership of 31c77.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcKK../2cbb7.. ownership of 5f1c7.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLKn../291e4.. ownership of 9dd4b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMaub../2b187.. ownership of 38cf5.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMRu1../f4c3c.. ownership of 6f34f.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNvH../0701c.. ownership of e74d2.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHSy../9dc65.. ownership of 7da4b.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQv2../000fa.. ownership of d158d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKey../3239e.. ownership of 047c9.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMM1A../68f7d.. ownership of fc537.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJAM../d5e28.. ownership of f8891.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJsS../f5066.. ownership of caf77.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHvY../3c526.. ownership of af2f6.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLiL../83ace.. ownership of de8fd.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMU4G../f70e2.. ownership of b05ec.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMUQE../564e5.. ownership of 037a7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbFh../e05a3.. ownership of cde23.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJ2G../6cb24.. ownership of b25dd.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLzi../7e646.. ownership of fbdca.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMX1y../850bb.. ownership of b618d.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMX2P../1911b.. ownership of 900ac.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPfb../f9ac1.. ownership of 7f9d1.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMa5p../7abaf.. ownership of 4f1fa.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQY2../8f836.. ownership of e4ed7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYN7../65000.. ownership of 58c7c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMR5z../21c99.. ownership of 5fd8c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKpT../3fe4f.. ownership of cfc1f.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPda../961e7.. ownership of 944de.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFv4../a769a.. ownership of a3f36.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcCn../3bb87.. ownership of a6d0d.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMa8Q../e3491.. ownership of 137df.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKWX../02ddc.. ownership of 90c30.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFES../697dc.. ownership of 49ea5.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdp8../50d0e.. ownership of 15e18.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbVC../03a99.. ownership of ed5eb.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcAX../c9f08.. ownership of 0cc8a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXy1../a8b0b.. ownership of de248.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMbAn../b323d.. ownership of d021d.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKQH../b490d.. ownership of a3944.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXmp../b7ead.. ownership of 9283c.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMJm7../22606.. ownership of 545d6.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPqT../301f7.. ownership of 1aca7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGZ7../6ae66.. ownership of a3463.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQ8n../09372.. ownership of 8627a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMaph../97500.. ownership of c575e.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMKpd../53fd3.. ownership of 493d0.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMXDD../4b6f9.. ownership of f206b.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZCV../e43b2.. ownership of a7ed7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTXa../a2620.. ownership of fc25a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMWsm../aff06.. ownership of fdae7.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMN4w../bdfd1.. ownership of 4204a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMQaq../355ef.. ownership of bb42a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMcuY../280d3.. ownership of 1fb9a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYMZ../77544.. ownership of fd974.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMTDA../a9bd0.. ownership of 67897.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLHM../3242b.. ownership of 6fdbf.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMNZF../fde62.. ownership of 9fe6a.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHFU../be2ee.. ownership of e0f11.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMdD4../d1ebb.. ownership of 27421.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMHaC../bcc01.. ownership of 8bf94.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMGQy../ac1ba.. ownership of b651e.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMPcE../b2b69.. ownership of fd3b0.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZGJ../60b70.. ownership of 6e71b.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMLSc../bea36.. ownership of 5b529.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUNFE../9e669.. doc published by PrCx1..
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known 7c691..and9I : ∀ x0 x1 x2 x3 x4 x5 x6 x7 x8 : ο . x0x1x2x3x4x5x6x7x8and (and (and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6) x7) x8
Definition MetaFunctor_prop1idT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 . x0 x4x1 x4 x4 (x2 x4)
Definition MetaFunctor_prop2compT := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . x0 x4x0 x5x0 x6x1 x4 x5 x7x1 x5 x6 x8x1 x4 x6 (x3 x4 x5 x6 x8 x7)
Definition MetaCat_IdR_pidL := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x4 x5 x6 (x2 x4) = x6
Definition MetaCat_IdL_pidR := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x5 x5 (x2 x5) x6 = x6
Definition MetaCat_Comp_assoc_pcompAssoc := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 x9 x10 . x0 x4x0 x5x0 x6x0 x7x1 x4 x5 x8x1 x5 x6 x9x1 x6 x7 x10x3 x4 x5 x7 (x3 x5 x6 x7 x10 x9) x8 = x3 x4 x6 x7 x10 (x3 x4 x5 x6 x9 x8)
Definition MetaCatMetaCat := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . and (and (and (MetaFunctor_prop1 x0 x1 x2 x3) (MetaFunctor_prop2 x0 x1 x2 x3)) (and (MetaCat_IdR_p x0 x1 x2 x3) (MetaCat_IdL_p x0 x1 x2 x3))) (MetaCat_Comp_assoc_p x0 x1 x2 x3)
Known and3Iand3I : ∀ x0 x1 x2 : ο . x0x1x2and (and x0 x1) x2
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem 047c9..MetaCat_I : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaFunctor_prop1 x0 x1 x2 x3MetaFunctor_prop2 x0 x1 x2 x3(∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x4 x5 x6 (x2 x4) = x6)(∀ x4 x5 x6 . x0 x4x0 x5x1 x4 x5 x6x3 x4 x5 x5 (x2 x5) x6 = x6)(∀ x4 x5 x6 x7 x8 x9 x10 . x0 x4x0 x5x0 x6x0 x7x1 x4 x5 x8x1 x5 x6 x9x1 x6 x7 x10x3 x4 x5 x7 (x3 x5 x6 x7 x10 x9) x8 = x3 x4 x6 x7 x10 (x3 x4 x5 x6 x9 x8))MetaCat x0 x1 x2 x3 (proof)
Theorem 7da4b..MetaCat_E : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3∀ x4 : ο . (MetaFunctor_prop1 x0 x1 x2 x3MetaFunctor_prop2 x0 x1 x2 x3(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x5 x6 x7 (x2 x5) = x7)(∀ x5 x6 x7 . x0 x5x0 x6x1 x5 x6 x7x3 x5 x6 x6 (x2 x6) x7 = x7)(∀ x5 x6 x7 x8 x9 x10 x11 . x0 x5x0 x6x0 x7x0 x8x1 x5 x6 x9x1 x6 x7 x10x1 x7 x8 x11x3 x5 x6 x8 (x3 x6 x7 x8 x11 x10) x9 = x3 x5 x7 x8 x11 (x3 x5 x6 x7 x10 x9))x4)x4 (proof)
Theorem 6f34f..MetaCatOp : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3MetaCat x0 (λ x4 x5 . x1 x5 x4) x2 (λ x4 x5 x6 x7 x8 . x3 x6 x5 x4 x8 x7) (proof)
Definition MetaCat_monic_pmonic := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 . and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (∀ x7 . x0 x7∀ x8 x9 . x1 x7 x4 x8x1 x7 x4 x9x3 x7 x4 x5 x6 x8 = x3 x7 x4 x5 x6 x9x8 = x9)
Definition MetaCat_terminal_pterminal_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x6 x4 (x5 x6)) (∀ x7 . x1 x6 x4 x7x7 = x5 x6))
Definition MetaCat_initial_pinitial_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . and (x0 x4) (∀ x6 . x0 x6and (x1 x4 x6 (x5 x6)) (∀ x7 . x1 x4 x6 x7x7 = x5 x6))
Definition MetaCat_product_pproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x10 x4 x11x1 x10 x5 x12and (and (and (x1 x10 x6 (x9 x10 x11 x12)) (x3 x10 x6 x4 x7 (x9 x10 x11 x12) = x11)) (x3 x10 x6 x5 x8 (x9 x10 x11 x12) = x12)) (∀ x13 . x1 x10 x6 x13x3 x10 x6 x4 x7 x13 = x11x3 x10 x6 x5 x8 x13 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_product_constr_pproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_product_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Definition MetaCat_coproduct_pcoproduct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (∀ x10 . x0 x10∀ x11 x12 . x1 x4 x10 x11x1 x5 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x5 x6 x10 (x9 x10 x11 x12) x8 = x12)) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x5 x6 x10 x13 x8 = x12x13 = x9 x10 x11 x12))
Definition MetaCat_coproduct_constr_pcoproduct_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . ∀ x8 x9 . x0 x8x0 x9MetaCat_coproduct_p x0 x1 x2 x3 x8 x9 (x4 x8 x9) (x5 x8 x9) (x6 x8 x9) (x7 x8 x9)
Definition MetaCat_equalizer_buggy_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x8 x4 x9)) (∀ x11 . x0 x11∀ x12 . x1 x11 x4 x12x3 x11 x4 x5 x6 x12 = x3 x11 x4 x5 x7 x12and (and (x1 x11 x8 (x10 x11 x12)) (x3 x11 x8 x4 x9 (x10 x11 x12) = x12)) (∀ x13 . x1 x11 x8 x13x3 x11 x8 x4 x9 x13 = x12x13 = x10 x11 x12))
Definition MetaCat_equalizer_buggy_struct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_equalizer_buggy_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Definition MetaCat_coequalizer_buggy_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 . λ x10 : ι → ι → ι . and (and (and (and (and (and (x0 x4) (x0 x5)) (x1 x4 x5 x6)) (x1 x4 x5 x7)) (x0 x8)) (x1 x5 x8 x9)) (∀ x11 . x0 x11∀ x12 . x1 x5 x11 x12x3 x4 x5 x11 x12 x6 = x3 x4 x5 x11 x12 x7and (and (x1 x8 x11 (x10 x11 x12)) (x3 x5 x8 x11 (x10 x11 x12) x9 = x12)) (∀ x13 . x1 x8 x11 x13x3 x5 x8 x11 x13 x9 = x12x13 = x10 x11 x12))
Definition MetaCat_coequalizer_buggy_struct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 : ι → ι → ι → ι → ι . λ x6 : ι → ι → ι → ι → ι → ι → ι . ∀ x7 x8 . x0 x7x0 x8∀ x9 x10 . x1 x7 x8 x9x1 x7 x8 x10MetaCat_coequalizer_buggy_p x0 x1 x2 x3 x7 x8 x9 x10 (x4 x7 x8 x9 x10) (x5 x7 x8 x9 x10) (x6 x7 x8 x9 x10)
Definition MetaCat_pullback_buggy_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x4 x6 x7)) (x1 x5 x6 x8)) (x0 x9)) (x1 x9 x4 x10)) (x1 x9 x5 x11)) (∀ x13 . x0 x13∀ x14 . x1 x13 x4 x14∀ x15 . x1 x13 x5 x15x3 x13 x4 x6 x7 x14 = x3 x13 x5 x6 x8 x15and (and (and (x1 x13 x9 (x12 x13 x14 x15)) (x3 x13 x9 x4 x10 (x12 x13 x14 x15) = x14)) (x3 x13 x9 x5 x11 (x12 x13 x14 x15) = x15)) (∀ x16 . x1 x13 x9 x16x3 x13 x9 x4 x10 x16 = x14x3 x13 x9 x5 x11 x16 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_pullback_buggy_struct_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8x0 x9x0 x10∀ x11 x12 . x1 x8 x10 x11x1 x9 x10 x12MetaCat_pullback_buggy_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)
Definition MetaCat_pushout_buggy_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 x7 x8 x9 x10 x11 . λ x12 : ι → ι → ι → ι . and (and (and (and (and (and (and (and (x0 x4) (x0 x5)) (x0 x6)) (x1 x6 x4 x7)) (x1 x6 x5 x8)) (x0 x9)) (x1 x4 x9 x10)) (x1 x5 x9 x11)) (∀ x13 . x0 x13∀ x14 . x1 x4 x13 x14∀ x15 . x1 x5 x13 x15x3 x6 x4 x13 x14 x7 = x3 x6 x5 x13 x15 x8and (and (and (x1 x9 x13 (x12 x13 x14 x15)) (x3 x4 x9 x13 (x12 x13 x14 x15) x10 = x14)) (x3 x5 x9 x13 (x12 x13 x14 x15) x11 = x15)) (∀ x16 . x1 x9 x13 x16x3 x4 x9 x13 x16 x10 = x14x3 x5 x9 x13 x16 x11 = x15x16 = x12 x13 x14 x15))
Definition MetaCat_pushout_buggy_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . ∀ x8 x9 x10 . x0 x8x0 x9x0 x10∀ x11 x12 . x1 x10 x8 x11x1 x10 x9 x12MetaCat_pushout_buggy_p x0 x1 x2 x3 x8 x9 x10 x11 x12 (x4 x8 x9 x10 x11 x12) (x5 x8 x9 x10 x11 x12) (x6 x8 x9 x10 x11 x12) (x7 x8 x9 x10 x11 x12)
Definition MetaCat_exp_pexponent_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 x10 x11 . λ x12 : ι → ι → ι . and (and (and (and (x0 x8) (x0 x9)) (x0 x10)) (x1 (x4 x10 x8) x9 x11)) (∀ x13 . x0 x13∀ x14 . x1 (x4 x13 x8) x9 x14and (and (x1 x13 x10 (x12 x13 x14)) (x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 (x12 x13 x14) (x5 x13 x8)) (x6 x13 x8)) = x14)) (∀ x15 . x1 x13 x10 x15x3 (x4 x13 x8) (x4 x10 x8) x9 x11 (x7 x10 x8 (x4 x13 x8) (x3 (x4 x13 x8) x13 x10 x15 (x5 x13 x8)) (x6 x13 x8)) = x14x15 = x12 x13 x14))
Definition MetaCat_exp_constr_pproduct_exponent_constr_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 x5 x6 : ι → ι → ι . λ x7 : ι → ι → ι → ι → ι → ι . λ x8 x9 : ι → ι → ι . λ x10 : ι → ι → ι → ι → ι . and (MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7) (∀ x11 x12 . x0 x11x0 x12MetaCat_exp_p x0 x1 x2 x3 x4 x5 x6 x7 x11 x12 (x8 x11 x12) (x9 x11 x12) (x10 x11 x12))
Definition MetaCat_subobject_classifier_buggy_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 . λ x8 : ι → ι → ι → ι . λ x9 : ι → ι → ι → ι → ι → ι → ι . and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x1 x4 x6 x7)) (∀ x10 x11 x12 . MetaCat_monic_p x0 x1 x2 x3 x10 x11 x12and (x1 x11 x6 (x8 x10 x11 x12)) (MetaCat_pullback_buggy_p x0 x1 x2 x3 x4 x11 x6 x7 (x8 x10 x11 x12) x10 (x5 x10) x12 (x9 x10 x11 x12)))
Definition MetaCat_nno_pnno_p := λ x0 : ι → ο . λ x1 : ι → ι → ι → ο . λ x2 : ι → ι . λ x3 : ι → ι → ι → ι → ι → ι . λ x4 . λ x5 : ι → ι . λ x6 x7 x8 . λ x9 : ι → ι → ι → ι . and (and (and (and (MetaCat_terminal_p x0 x1 x2 x3 x4 x5) (x0 x6)) (x1 x4 x6 x7)) (x1 x6 x6 x8)) (∀ x10 x11 x12 . x0 x10x1 x4 x10 x11x1 x10 x10 x12and (and (and (x1 x6 x10 (x9 x10 x11 x12)) (x3 x4 x6 x10 (x9 x10 x11 x12) x7 = x11)) (x3 x6 x6 x10 (x9 x10 x11 x12) x8 = x3 x6 x10 x10 x12 (x9 x10 x11 x12))) (∀ x13 . x1 x6 x10 x13x3 x4 x6 x10 x13 x7 = x11x3 x6 x6 x10 x13 x8 = x3 x6 x10 x10 x12 x13x13 = x9 x10 x11 x12))
Theorem 9dd4b..product_coproduct_Op : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . ∀ x9 : ι → ι → ι → ι . MetaCat_product_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaCat_coproduct_p x0 (λ x10 x11 . x1 x11 x10) x2 (λ x10 x11 x12 x13 x14 . x3 x12 x11 x10 x14 x13) x4 x5 x6 x7 x8 x9 (proof)
Theorem 31c77..product_coproduct_constr_Op : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 : ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x4 x5 x6 x7MetaCat_coproduct_constr_p x0 (λ x8 x9 . x1 x9 x8) x2 (λ x8 x9 x10 x11 x12 . x3 x10 x9 x8 x12 x11) x4 x5 x6 x7 (proof)
Theorem df89e..coproduct_product_Op : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 . ∀ x9 : ι → ι → ι → ι . MetaCat_coproduct_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9MetaCat_product_p x0 (λ x10 x11 . x1 x11 x10) x2 (λ x10 x11 x12 x13 x14 . x3 x12 x11 x10 x14 x13) x4 x5 x6 x7 x8 x9 (proof)
Theorem 2bad6..coproduct_product_constr_Op : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 : ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 x1 x2 x3 x4 x5 x6 x7MetaCat_product_constr_p x0 (λ x8 x9 . x1 x9 x8) x2 (λ x8 x9 x10 x11 x12 . x3 x10 x9 x8 x12 x11) x4 x5 x6 x7 (proof)
Known and7Iand7I : ∀ x0 x1 x2 x3 x4 x5 x6 : ο . x0x1x2x3x4x5x6and (and (and (and (and (and x0 x1) x2) x3) x4) x5) x6
Theorem d9a97.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 x9 . ∀ x10 : ι → ι → ι . MetaCat_equalizer_buggy_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10MetaCat_coequalizer_buggy_p x0 (λ x11 x12 . x1 x12 x11) x2 (λ x11 x12 x13 x14 x15 . x3 x13 x12 x11 x15 x14) x5 x4 x6 x7 x8 x9 x10 (proof)
Theorem bcf11.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 : ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p x0 x1 x2 x3 x4 x5 x6MetaCat_coequalizer_buggy_struct_p x0 (λ x7 x8 . x1 x8 x7) x2 (λ x7 x8 x9 x10 x11 . x3 x9 x8 x7 x11 x10) (λ x7 x8 . x4 x8 x7) (λ x7 x8 . x5 x8 x7) (λ x7 x8 . x6 x8 x7) (proof)
Theorem db622.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 x9 . ∀ x10 : ι → ι → ι . MetaCat_coequalizer_buggy_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10MetaCat_equalizer_buggy_p x0 (λ x11 x12 . x1 x12 x11) x2 (λ x11 x12 x13 x14 x15 . x3 x13 x12 x11 x15 x14) x5 x4 x6 x7 x8 x9 x10 (proof)
Theorem e8468.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 : ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p x0 x1 x2 x3 x4 x5 x6MetaCat_equalizer_buggy_struct_p x0 (λ x7 x8 . x1 x8 x7) x2 (λ x7 x8 x9 x10 x11 . x3 x9 x8 x7 x11 x10) (λ x7 x8 . x4 x8 x7) (λ x7 x8 . x5 x8 x7) (λ x7 x8 . x6 x8 x7) (proof)
Theorem 8f137.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ι → ι → ι → ι . MetaCat_pullback_buggy_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12MetaCat_pushout_buggy_p x0 (λ x13 x14 . x1 x14 x13) x2 (λ x13 x14 x15 x16 x17 . x3 x15 x14 x13 x17 x16) x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)
Theorem 417a6.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p x0 x1 x2 x3 x4 x5 x6 x7MetaCat_pushout_buggy_constr_p x0 (λ x8 x9 . x1 x9 x8) x2 (λ x8 x9 x10 x11 x12 . x3 x10 x9 x8 x12 x11) x4 x5 x6 x7 (proof)
Theorem 02b99.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . ∀ x4 x5 x6 x7 x8 x9 x10 x11 . ∀ x12 : ι → ι → ι → ι . MetaCat_pushout_buggy_p x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12MetaCat_pullback_buggy_p x0 (λ x13 x14 . x1 x14 x13) x2 (λ x13 x14 x15 x16 x17 . x3 x15 x14 x13 x17 x16) x4 x5 x6 x7 x8 x9 x10 x11 x12 (proof)
Theorem a4533.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 x4 x5 x6 : ι → ι → ι → ι → ι → ι . ∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p x0 x1 x2 x3 x4 x5 x6 x7MetaCat_pullback_buggy_struct_p x0 (λ x8 x9 . x1 x9 x8) x2 (λ x8 x9 x10 x11 x12 . x3 x10 x9 x8 x12 x11) x4 x5 x6 x7 (proof)
Known and4Iand4I : ∀ x0 x1 x2 x3 : ο . x0x1x2x3and (and (and x0 x1) x2) x3
Theorem cf46e.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3∀ x4 x5 : ι → ι → ι → ι → ι . ∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p x0 x1 x2 x3 x4 x5 x6∀ x7 x8 x9 : ι → ι → ι . ∀ x10 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x7 x8 x9 x10MetaCat_pullback_buggy_struct_p x0 x1 x2 x3 (λ x11 x12 x13 x14 x15 . x4 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12))) (λ x11 x12 x13 x14 x15 . x3 (x4 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12))) (x7 x11 x12) x11 (x8 x11 x12) (x5 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12)))) (λ x11 x12 x13 x14 x15 . x3 (x4 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12))) (x7 x11 x12) x12 (x9 x11 x12) (x5 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12)))) (λ x11 x12 x13 x14 x15 x16 x17 x18 . x6 (x7 x11 x12) x13 (x3 (x7 x11 x12) x11 x13 x14 (x8 x11 x12)) (x3 (x7 x11 x12) x12 x13 x15 (x9 x11 x12)) x16 (x10 x11 x12 x16 x17 x18)) (proof)
Theorem 6f81c.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4 (proof)
Theorem f0f28.. : ∀ x0 : ι → ο . ∀ x1 : ι → ι → ι → ο . ∀ x2 : ι → ι . ∀ x3 : ι → ι → ι → ι → ι → ι . MetaCat x0 x1 x2 x3(∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p x0 x1 x2 x3 x5 x7 x9x8)x8)x6)x6)x4)x4)(∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p x0 x1 x2 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4 (proof)
Param SepSep : ι(ιο) → ι
Definition famunionfamunion := λ x0 . λ x1 : ι → ι . prim3 (prim5 x0 x1)
Param binunionbinunion : ιιι
Param Inj1Inj1 : ιι
Definition Inj0Inj0 := λ x0 . prim5 x0 Inj1
Definition setsumsetsum := λ x0 x1 . binunion (prim5 x0 Inj0) (prim5 x1 Inj1)
Definition lamSigma := λ x0 . λ x1 : ι → ι . famunion x0 (λ x2 . prim5 (x1 x2) (setsum x2))
Param apap : ιιι
Definition PiPi := λ x0 . λ x1 : ι → ι . {x2 ∈ prim4 (lam x0 (λ x2 . prim3 (x1 x2)))|∀ x3 . x3x0ap x2 x3x1 x3}
Definition setexpsetexp := λ x0 x1 . Pi x1 (λ x2 . x0)
Definition HomSetSetHom := λ x0 x1 x2 . x2setexp x1 x0
Definition TrueTrue := ∀ x0 : ο . x0x0
Conjecture 31571.. : MetaCat (λ x0 . True) HomSet (λ x0 . lam x0 (λ x1 . x1)) (λ x0 x1 x2 x3 x4 . lam x0 (λ x5 . ap x3 (ap x4 x5)))
Conjecture 637da.. : MetaCat (λ x0 . x0prim6 0) HomSet (λ x0 . lam x0 (λ x1 . x1)) (λ x0 x1 x2 x3 x4 . lam x0 (λ x5 . ap x3 (ap x4 x5)))
Conjecture 95fe9.. : MetaCat (λ x0 . x0prim6 (prim6 0)) HomSet (λ x0 . lam x0 (λ x1 . x1)) (λ x0 x1 x2 x3 x4 . lam x0 (λ x5 . ap x3 (ap x4 x5)))
Known lam_Pilam_Pi : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x2 x3x1 x3)lam x0 x2Pi x0 x1
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition nInnIn := λ x0 x1 . not (x0x1)
Known EmptyEEmptyE : ∀ x0 . nIn x0 0
Known Pi_etaPi_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2Pi x0 x1lam x0 (ap x2) = x2
Known encode_u_extencode_u_ext : ∀ x0 . ∀ x1 x2 : ι → ι . (∀ x3 . x3x0x1 x3 = x2 x3)lam x0 x1 = lam x0 x2
Theorem fa807..MetaCatSet_initial_gen : ∀ x0 : ι → ο . x0 0∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . MetaCat_initial_p x0 HomSet (λ x5 . lam x5 (λ x6 . x6)) (λ x5 x6 x7 x8 x9 . lam x5 (λ x10 . ap x8 (ap x9 x10))) x2 x4x3)x3)x1)x1 (proof)
Known TrueITrueI : True
Theorem 80cab..MetaCatSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Param ordsuccordsucc : ιι
Known In_0_1In_0_1 : 01
Param SingSing : ιι
Known SingESingE : ∀ x0 x1 . x1Sing x0x1 = x0
Known eq_1_Sing0eq_1_Sing0 : 1 = Sing 0
Known ap_Piap_Pi : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 x3 . x2Pi x0 x1x3x0ap x2 x3x1 x3
Theorem 4cd1b..MetaCatSet_terminal_gen : ∀ x0 : ι → ο . x0 1∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . MetaCat_terminal_p x0 HomSet (λ x5 . lam x5 (λ x6 . x6)) (λ x5 x6 x7 x8 x9 . lam x5 (λ x10 . ap x8 (ap x9 x10))) x2 x4x3)x3)x1)x1 (proof)
Theorem 370ea..MetaCatSet_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p (λ x4 . True) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Param combine_funcscombine_funcs : ιι(ιι) → (ιι) → ιι
Known and6Iand6I : ∀ x0 x1 x2 x3 x4 x5 : ο . x0x1x2x3x4x5and (and (and (and (and x0 x1) x2) x3) x4) x5
Known Inj0_setsumInj0_setsum : ∀ x0 x1 x2 . x2x0Inj0 x2setsum x0 x1
Known Inj1_setsumInj1_setsum : ∀ x0 x1 x2 . x2x1Inj1 x2setsum x0 x1
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known setsum_Inj_invsetsum_Inj_inv : ∀ x0 x1 x2 . x2setsum x0 x1or (∀ x3 : ο . (∀ x4 . and (x4x0) (x2 = Inj0 x4)x3)x3) (∀ x3 : ο . (∀ x4 . and (x4x1) (x2 = Inj1 x4)x3)x3)
Known combine_funcs_eq1combine_funcs_eq1 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj0 x4) = x2 x4
Known combine_funcs_eq2combine_funcs_eq2 : ∀ x0 x1 . ∀ x2 x3 : ι → ι . ∀ x4 . combine_funcs x0 x1 x2 x3 (Inj1 x4) = x3 x4
Known betabeta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2x0ap (lam x0 x1) x2 = x1 x2
Theorem 3c078..MetaCatSet_coproduct_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setsum x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Theorem c28ea..MetaCatSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . True) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition setprodsetprod := λ x0 x1 . lam x0 (λ x2 . x1)
Param If_iIf_i : οιιι
Known ap0_Sigmaap0_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 0x0
Known ap1_Sigmaap1_Sigma : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1ap x2 1x1 (ap x2 0)
Known tuple_2_0_eqtuple_2_0_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 0 = x0
Known tuple_2_1_eqtuple_2_1_eq : ∀ x0 x1 . ap (lam 2 (λ x3 . If_i (x3 = 0) x0 x1)) 1 = x1
Known tuple_Sigma_etatuple_Sigma_eta : ∀ x0 . ∀ x1 : ι → ι . ∀ x2 . x2lam x0 x1lam 2 (λ x4 . If_i (x4 = 0) (ap x2 0) (ap x2 1)) = x2
Known tuple_2_setprodtuple_2_setprod : ∀ x0 x1 x2 . x2x0∀ x3 . x3x1lam 2 (λ x4 . If_i (x4 = 0) x2 x3)setprod x0 x1
Theorem 21e78..MetaCatSet_product_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1 (proof)
Theorem 14d11..MetaCatSet_product : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p (λ x8 . True) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param ZF_closedZF_closed : ιο
Definition TransSetTransSet := λ x0 . ∀ x1 . x1x0x1x0
Known UnivOf_TransSetUnivOf_TransSet : ∀ x0 . TransSet (prim6 x0)
Known ZF_Power_closedZF_Power_closed : ∀ x0 . ZF_closed x0∀ x1 . x1x0prim4 x1x0
Known PowerIPowerI : ∀ x0 x1 . x1x0x1prim4 x0
Known UnivOf_ZF_closedUnivOf_ZF_closed : ∀ x0 . ZF_closed (prim6 x0)
Theorem 6aa34..UnivOf_Subq_closed : ∀ x0 x1 . x1prim6 x0∀ x2 . x2x1x2prim6 x0 (proof)
Definition famunion_closedfamunion_closed := λ x0 . ∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)famunion x1 x2x0
Definition Union_closedUnion_closed := λ x0 . ∀ x1 . x1x0prim3 x1x0
Definition Repl_closedRepl_closed := λ x0 . ∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)prim5 x1 x2x0
Theorem Union_Repl_famunion_closedUnion_Repl_famunion_closed : ∀ x0 . Union_closed x0Repl_closed x0famunion_closed x0 (proof)
Definition Power_closedPower_closed := λ x0 . ∀ x1 . x1x0prim4 x1x0
Known ZF_closed_EZF_closed_E : ∀ x0 . ZF_closed x0∀ x1 : ο . (Union_closed x0Power_closed x0Repl_closed x0x1)x1
Known Empty_In_PowerEmpty_In_Power : ∀ x0 . 0prim4 x0
Theorem 1037d..ZF_closed_0 : ∀ x0 x1 . TransSet x0ZF_closed x0x1x00x0 (proof)
Known In_indIn_ind : ∀ x0 : ι → ο . (∀ x1 . (∀ x2 . x2x1x0 x2)x0 x1)∀ x1 . x0 x1
Known Inj1_eqInj1_eq : ∀ x0 . Inj1 x0 = binunion (Sing 0) (prim5 x0 Inj1)
Known ZF_binunion_closedZF_binunion_closed : ∀ x0 . ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0binunion x1 x2x0
Known ZF_Sing_closedZF_Sing_closed : ∀ x0 . ZF_closed x0∀ x1 . x1x0Sing x1x0
Known ZF_Repl_closedZF_Repl_closed : ∀ x0 . ZF_closed x0∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)prim5 x1 x2x0
Theorem 7eedb..ZF_Inj1_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0Inj1 x1x0 (proof)
Theorem 1045a..ZF_Inj0_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0Inj0 x1x0 (proof)
Theorem 32cb8..ZF_setsum_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setsum x1 x2x0 (proof)
Theorem c59b3..ZF_Sigma_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)lam x1 x2x0 (proof)
Theorem ecfb5..ZF_setprod_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setprod x1 x2x0 (proof)
Known Sep_In_PowerSep_In_Power : ∀ x0 . ∀ x1 : ι → ο . Sep x0 x1prim4 x0
Theorem 43ba5..ZF_Pi_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 : ι → ι . (∀ x3 . x3x1x2 x3x0)Pi x1 x2x0 (proof)
Theorem 33118..ZF_setexp_closed : ∀ x0 . TransSet x0ZF_closed x0∀ x1 . x1x0∀ x2 . x2x0setexp x2 x1x0 (proof)
Known UnivOf_InUnivOf_In : ∀ x0 . x0prim6 x0
Theorem 6694e..MetaCatHFSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . x4prim6 0) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Theorem 4e15c..MetaCatSmallSet_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p (λ x4 . x4prim6 (prim6 0)) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Known ZF_ordsucc_closedZF_ordsucc_closed : ∀ x0 . ZF_closed x0∀ x1 . x1x0ordsucc x1x0
Theorem d3646..MetaCatHFSet_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p (λ x4 . x4prim6 0) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Theorem b5da2..MetaCatSmallSet_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p (λ x4 . x4prim6 (prim6 0)) HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x3x2)x2)x0)x0 (proof)
Theorem 5604f..MetaCatHFSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . x8prim6 0) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 002ee..MetaCatSmallSet_coproduct : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p (λ x8 . x8prim6 (prim6 0)) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 8ae2a..MetaCatHFSet_product : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p (λ x8 . x8prim6 0) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Theorem 4281b..MetaCatSmallSet_product : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p (λ x8 . x8prim6 (prim6 0)) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0 (proof)
Conjecture fec92.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p x0 HomSet (λ x7 . lam x7 (λ x8 . x8)) (λ x7 x8 x9 x10 x11 . lam x7 (λ x12 . ap x10 (ap x11 x12))) x2 x4 x6x5)x5)x3)x3)x1)x1
Conjecture 03db4.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p (λ x6 . True) HomSet (λ x6 . lam x6 (λ x7 . x7)) (λ x6 x7 x8 x9 x10 . lam x6 (λ x11 . ap x9 (ap x10 x11))) x1 x3 x5x4)x4)x2)x2)x0)x0
Conjecture 7d4ee.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p (λ x6 . x6prim6 0) HomSet (λ x6 . lam x6 (λ x7 . x7)) (λ x6 x7 x8 x9 x10 . lam x6 (λ x11 . ap x9 (ap x10 x11))) x1 x3 x5x4)x4)x2)x2)x0)x0
Conjecture e0823.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p (λ x6 . x6prim6 (prim6 0)) HomSet (λ x6 . lam x6 (λ x7 . x7)) (λ x6 x7 x8 x9 x10 . lam x6 (λ x11 . ap x9 (ap x10 x11))) x1 x3 x5x4)x4)x2)x2)x0)x0
Conjecture 32409.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p x0 HomSet (λ x7 . lam x7 (λ x8 . x8)) (λ x7 x8 x9 x10 x11 . lam x7 (λ x12 . ap x10 (ap x11 x12))) x2 x4 x6x5)x5)x3)x3)x1)x1
Conjecture 2c602.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p (λ x7 . x7prim6 0) HomSet (λ x7 . lam x7 (λ x8 . x8)) (λ x7 x8 x9 x10 x11 . lam x7 (λ x12 . ap x10 (ap x11 x12))) x2 x4 x6x5)x5)x3)x3)x1)x1
Conjecture 6fa47.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x2x1x0 x2)∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p (λ x7 . x7prim6 (prim6 0)) HomSet (λ x7 . lam x7 (λ x8 . x8)) (λ x7 x8 x9 x10 x11 . lam x7 (λ x12 . ap x10 (ap x11 x12))) x2 x4 x6x5)x5)x3)x3)x1)x1
Conjecture 9048a.. : ∀ x0 : ι → ο . MetaCat x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6)))(∀ x1 . x0 x1∀ x2 . x2x1x0 x2)(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1
Conjecture e4971.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p (λ x8 . True) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture f7865.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p (λ x8 . x8prim6 0) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 27032.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p (λ x8 . x8prim6 (prim6 0)) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 72fd2.. : ∀ x0 : ι → ο . MetaCat x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6)))(∀ x1 . x0 x1∀ x2 . x2x1x0 x2)(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setsum x1 x2))∀ x1 : ο . (∀ x2 : ι → ι → ι → ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι → ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι → ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p x0 HomSet (λ x9 . lam x9 (λ x10 . x10)) (λ x9 x10 x11 x12 x13 . lam x9 (λ x14 . ap x12 (ap x13 x14))) x2 x4 x6 x8x7)x7)x5)x5)x3)x3)x1)x1
Conjecture 6cf2e.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p (λ x8 . True) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture f5042.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p (λ x8 . x8prim6 0) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 3cfce.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p (λ x8 . x8prim6 (prim6 0)) HomSet (λ x8 . lam x8 (λ x9 . x9)) (λ x8 x9 x10 x11 x12 . lam x8 (λ x13 . ap x11 (ap x12 x13))) x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 4c8b8.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setexp x2 x1))MetaCat_exp_constr_p x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6))) setprod (λ x1 x2 . lam (setprod x1 x2) (λ x3 . ap x3 0)) (λ x1 x2 . lam (setprod x1 x2) (λ x3 . ap x3 1)) (λ x1 x2 x3 x4 x5 . lam x3 (λ x6 . lam 2 (λ x7 . If_i (x7 = 0) (ap x4 x6) (ap x5 x6)))) (λ x1 x2 . setexp x2 x1) (λ x1 x2 . lam (setprod (setexp x2 x1) x1) (λ x3 . ap (ap x3 0) (ap x3 1))) (λ x1 x2 x3 x4 . lam x3 (λ x5 . lam x1 (λ x6 . ap x4 (lam 2 (λ x7 . If_i (x7 = 0) x5 x6)))))
Conjecture e6b46.. : ∀ x0 : ι → ο . (∀ x1 . x0 x1∀ x2 . x0 x2x0 (setprod x1 x2))(∀ x1 . x0 x1∀ x2 . x0 x2x0 (setexp x2 x1))∀ x1 : ο . (∀ x2 : ι → ι → ι . (∀ x3 : ο . (∀ x4 : ι → ι → ι . (∀ x5 : ο . (∀ x6 : ι → ι → ι . (∀ x7 : ο . (∀ x8 : ι → ι → ι → ι → ι → ι . (∀ x9 : ο . (∀ x10 : ι → ι → ι . (∀ x11 : ο . (∀ x12 : ι → ι → ι . (∀ x13 : ο . (∀ x14 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p x0 HomSet (λ x15 . lam x15 (λ x16 . x16)) (λ x15 x16 x17 x18 x19 . lam x15 (λ x20 . ap x18 (ap x19 x20))) x2 x4 x6 x8 x10 x12 x14x13)x13)x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1
Conjecture 7a848.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p (λ x14 . True) HomSet (λ x14 . lam x14 (λ x15 . x15)) (λ x14 x15 x16 x17 x18 . lam x14 (λ x19 . ap x17 (ap x18 x19))) x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Conjecture b673c.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p (λ x14 . x14prim6 0) HomSet (λ x14 . lam x14 (λ x15 . x15)) (λ x14 x15 x16 x17 x18 . lam x14 (λ x19 . ap x17 (ap x18 x19))) x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 9c381.. : ∀ x0 : ι → ο . ∀ x1 x2 x3 . MetaCat_monic_p x0 HomSet (λ x4 . lam x4 (λ x5 . x5)) (λ x4 x5 x6 x7 x8 . lam x4 (λ x9 . ap x7 (ap x8 x9))) x1 x2 x3∀ x4 . x4x1∀ x5 . x5x1ap x3 x4 = ap x3 x5x4 = x5
Param invinv : ι(ιι) → ιι
Conjecture f0ae4.. : ∀ x0 : ι → ο . x0 1x0 2MetaCat_subobject_classifier_buggy_p x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6))) 1 (λ x1 . lam x1 (λ x2 . 0)) 2 (lam 1 (λ x1 . 1)) (λ x1 x2 x3 . lam x2 (λ x4 . If_i (∀ x5 : ο . (∀ x6 . and (x6x1) (ap x3 x6 = x4)x5)x5) 1 0)) (λ x1 x2 x3 x4 x5 x6 . lam x4 (λ x7 . inv x1 (ap x3) (ap x6 x7)))
Conjecture d9711.. : ∀ x0 : ι → ο . x0 1x0 2∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . (∀ x5 : ο . (∀ x6 . (∀ x7 : ο . (∀ x8 . (∀ x9 : ο . (∀ x10 : ι → ι → ι → ι . (∀ x11 : ο . (∀ x12 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p x0 HomSet (λ x13 . lam x13 (λ x14 . x14)) (λ x13 x14 x15 x16 x17 . lam x13 (λ x18 . ap x16 (ap x17 x18))) x2 x4 x6 x8 x10 x12x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1
Conjecture 0f6a0.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p (λ x12 . True) HomSet (λ x12 . lam x12 (λ x13 . x13)) (λ x12 x13 x14 x15 x16 . lam x12 (λ x17 . ap x15 (ap x16 x17))) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 67463.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p (λ x12 . x12prim6 0) HomSet (λ x12 . lam x12 (λ x13 . x13)) (λ x12 x13 x14 x15 x16 . lam x12 (λ x17 . ap x15 (ap x16 x17))) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 39f19.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p (λ x12 . x12prim6 (prim6 0)) HomSet (λ x12 . lam x12 (λ x13 . x13)) (λ x12 x13 x14 x15 x16 . lam x12 (λ x17 . ap x15 (ap x16 x17))) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param omegaomega : ι
Param nat_primrecnat_primrec : ι(ιιι) → ιι
Conjecture e35b8.. : ∀ x0 : ι → ο . x0 1x0 omegaMetaCat_nno_p x0 HomSet (λ x1 . lam x1 (λ x2 . x2)) (λ x1 x2 x3 x4 x5 . lam x1 (λ x6 . ap x4 (ap x5 x6))) 1 (λ x1 . lam x1 (λ x2 . 0)) omega (lam 1 (λ x1 . 0)) (lam omega ordsucc) (λ x1 x2 x3 . lam omega (nat_primrec (ap x2 0) (λ x4 . ap x3)))
Conjecture 492d5.. : ∀ x0 : ι → ο . x0 1x0 omega∀ x1 : ο . (∀ x2 . (∀ x3 : ο . (∀ x4 : ι → ι . (∀ x5 : ο . (∀ x6 . (∀ x7 : ο . (∀ x8 . (∀ x9 : ο . (∀ x10 . (∀ x11 : ο . (∀ x12 : ι → ι → ι → ι . MetaCat_nno_p x0 HomSet (λ x13 . lam x13 (λ x14 . x14)) (λ x13 x14 x15 x16 x17 . lam x13 (λ x18 . ap x16 (ap x17 x18))) x2 x4 x6 x8 x10 x12x11)x11)x9)x9)x7)x7)x5)x5)x3)x3)x1)x1
Conjecture ed04c.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p (λ x12 . True) HomSet (λ x12 . lam x12 (λ x13 . x13)) (λ x12 x13 x14 x15 x16 . lam x12 (λ x17 . ap x15 (ap x16 x17))) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Conjecture 1dac4.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p (λ x12 . x12prim6 (prim6 0)) HomSet (λ x12 . lam x12 (λ x13 . x13)) (λ x12 x13 x14 x15 x16 . lam x12 (λ x17 . ap x15 (ap x16 x17))) x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0