Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cgbow (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wrex (λ x4 . wceq (cv x1) (co (co (cv x2) (cv x3) caddc) (cv x4) caddc)) (λ x4 . cprime)) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . codd))wceq cgbo (crab (λ x1 . wrex (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (w3a (wcel (cv x2) codd) (wcel (cv x3) codd) (wcel (cv x4) codd)) (wceq (cv x1) (co (co (cv x2) (cv x3) caddc) (cv x4) caddc))) (λ x4 . cprime)) (λ x3 . cprime)) (λ x2 . cprime)) (λ x1 . codd))(∀ x1 : ι → ο . w3a (wcel x1 ceven) (wbr c4 x1 clt) (wbr x1 (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) cle)wcel x1 cgbe)(∀ x1 : ι → ι → ι → ι → ι → ι → ο . ∀ x2 : ι → ι → ο . (∀ x3 . wceq (x2 x3) (crab (λ x4 . wn (wbr c2 (cv x4) cdvds)) (λ x4 . cz)))(∀ x3 x4 x5 x6 x7 . wceq (x1 x3 x4 x5 x6 x7) (crab (λ x8 . wrex (λ x9 . wrex (λ x10 . wrex (λ x11 . wa (w3a (wcel (cv x9) (x2 x4)) (wcel (cv x10) (x2 x4)) (wcel (cv x11) (x2 x4))) (wceq (cv x8) (co (co (cv x9) (cv x10) caddc) (cv x11) caddc))) (λ x11 . cprime)) (λ x10 . cprime)) (λ x9 . cprime)) (λ x8 . x2 x4)))∀ x3 x4 x5 x6 . wrex (λ x7 . wa (wbr (cv x7) (co (cdc c1 cc0) (cdc c2 c7) cexp) cle) (wral (λ x8 . wbr (cv x7) (cv x8) cltwcel (cv x8) (x1 x3 x8 x4 x5 x6)) x2)) (λ x7 . cn))wrex (λ x1 . wrex (λ x2 . wa (w3a (wceq (cfv cc0 (cv x2)) c7) (wceq (cfv c1 (cv x2)) (cdc c1 c3)) (wceq (cfv (cv x1) (cv x2)) (co (cdc c8 c9) (co (cdc c1 cc0) (cdc c2 c9) cexp) cmul))) (wral (λ x3 . w3a (wcel (cfv (cv x3) (cv x2)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) (co (co c4 (co (cdc c1 cc0) (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) clt)) (λ x3 . co cc0 (cv x1) cfzo))) (λ x2 . cfv (cv x1) ciccp)) (λ x1 . cfv c3 cuz)(∀ x1 : ι → ο . w3a (wcel x1 ceven) (wbr c4 x1 clt) (wbr x1 (co c4 (co c10 (cdc c1 c8) cexp) cmul) cle)wcel x1 cgbe)wrex (λ x1 . wrex (λ x2 . wa (w3a (wceq (cfv cc0 (cv x2)) c7) (wceq (cfv c1 (cv x2)) (cdc c1 c3)) (wceq (cfv (cv x1) (cv x2)) (co (cdc c8 c9) (co c10 (cdc c2 c9) cexp) cmul))) (wral (λ x3 . w3a (wcel (cfv (cv x3) (cv x2)) (cdif cprime (csn c2))) (wbr (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) (co (co c4 (co c10 (cdc c1 c8) cexp) cmul) c4 cmin) clt) (wbr c4 (co (cfv (co (cv x3) c1 caddc) (cv x2)) (cfv (cv x3) (cv x2)) cmin) clt)) (λ x3 . co cc0 (cv x1) cfzo))) (λ x2 . cfv (cv x1) ciccp)) (λ x1 . cfv c3 cuz)wrex (λ x1 . wa (wbr (cv x1) (co c10 (cdc c2 c7) cexp) cle) (wral (λ x2 . wbr (cv x1) (cv x2) cltwcel (cv x2) cgbo) (λ x2 . codd))) (λ x1 . cn)wceq cupwlks (cmpt (λ x1 . cvv) (λ x1 . copab (λ x2 x3 . w3a (wcel (cv x2) (cword (cdm (cfv (cv x1) ciedg)))) (wf (co cc0 (cfv (cv x2) chash) cfz) (cfv (cv x1) cvtx) (cv x3)) (wral (λ x4 . wceq (cfv (cfv (cv x4) (cv x2)) (cfv (cv x1) ciedg)) (cpr (cfv (cv x4) (cv x3)) (cfv (co (cv x4) c1 caddc) (cv x3)))) (λ x4 . co cc0 (cfv (cv x2) chash) cfzo)))))wceq cspr (cmpt (λ x1 . cvv) (λ x1 . cab (λ x2 . wrex (λ x3 . wrex (λ x4 . wceq (cv x2) (cpr (cv x3) (cv x4))) (λ x4 . cv x1)) (λ x3 . cv x1))))wceq cmgmhm (cmpt2 (λ x1 x2 . cmgm) (λ x1 x2 . cmgm) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wceq (cfv (co (cv x4) (cv x5) (cfv (cv x1) cplusg)) (cv x3)) (co (cfv (cv x4) (cv x3)) (cfv (cv x5) (cv x3)) (cfv (cv x2) cplusg))) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . co (cfv (cv x2) cbs) (cfv (cv x1) cbs) cmap)))wceq csubmgm (cmpt (λ x1 . cmgm) (λ x1 . crab (λ x2 . wral (λ x3 . wral (λ x4 . wcel (co (cv x3) (cv x4) (cfv (cv x1) cplusg)) (cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)) (λ x2 . cpw (cfv (cv x1) cbs))))wceq ccllaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wcel (co (cv x3) (cv x4) (cv x1)) (cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq ccomlaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wceq (co (cv x3) (cv x4) (cv x1)) (co (cv x4) (cv x3) (cv x1))) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq casslaw (copab (λ x1 x2 . wral (λ x3 . wral (λ x4 . wral (λ x5 . wceq (co (co (cv x3) (cv x4) (cv x1)) (cv x5) (cv x1)) (co (cv x3) (co (cv x4) (cv x5) (cv x1)) (cv x1))) (λ x5 . cv x2)) (λ x4 . cv x2)) (λ x3 . cv x2)))wceq cintop (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . co (cv x2) (cxp (cv x1) (cv x1)) cmap))wceq cclintop (cmpt (λ x1 . cvv) (λ x1 . co (cv x1) (cv x1) cintop))wceq cassintop (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wbr (cv x2) (cv x1) casslaw) (λ x2 . cfv (cv x1) cclintop)))x0)x0
type
prop
theory
SetMM
name
df_gbow__df_gbo__ax_bgbltosilva__ax_tgoldbachgt__ax_hgprmladder__ax_bgbltosilvaOLD__ax_hgprmladderOLD__ax_tgoldbachgtOLD__df_upwlks__df_spr__df_mgmhm__df_submgm__df_cllaw__df_comlaw__df_asslaw__df_intop__df_clintop__df_assintop
proof
PUV1k..
Megalodon
-
proofgold address
TMcHL..
creator
36224 PrCmT../07756..
owner
36224 PrCmT../07756..
term root
3b707..