∀ x0 x1 x2 . ∀ x3 x4 : ι → ι → ι . ∀ x5 : ι → ι → ο . ∀ x6 : ι → ι → ι . explicit_Reals x0 x1 x2 x3 x4 x5 ⟶ (∀ x7 . x7 ∈ x0 ⟶ ∀ x8 . x8 ∈ x0 ⟶ ∀ x9 . x9 ∈ x0 ⟶ ∀ x10 . x10 ∈ x0 ⟶ x6 x7 x8 = x6 x9 x10 ⟶ and (x7 = x9) (x8 = x10)) ⟶ explicit_Complex (ReplSep2 x0 (λ x7 . x0) (λ x7 x8 . True) x6) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (∀ x9 : ο . (∀ x10 . and (x10 ∈ x0) (x7 = x6 x8 x10) ⟶ x9) ⟶ x9))) x1) (λ x7 . x6 (prim0 (λ x8 . and (x8 ∈ x0) (x7 = x6 (prim0 (λ x10 . and (x10 ∈ x0) (∀ x11 : ο . (∀ x12 . and (x12 ∈ x0) (x7 = x6 x10 x12) ⟶ x11) ⟶ x11))) x8))) x1) (x6 x1 x1) (x6 x2 x1) (x6 x1 x2) (λ x7 x8 . x6 (x3 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (x3 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))))) (λ x7 x8 . x6 (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))) (explicit_Field_minus x0 x1 x2 x3 x4 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))))) (x3 (x4 (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x7 = x6 x9 x11) ⟶ x10) ⟶ x10))) (prim0 (λ x9 . and (x9 ∈ x0) (x8 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x8 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9)))) (x4 (prim0 (λ x9 . and (x9 ∈ x0) (x7 = x6 (prim0 (λ x11 . and (x11 ∈ x0) (∀ x12 : ο . (∀ x13 . and (x13 ∈ x0) (x7 = x6 x11 x13) ⟶ x12) ⟶ x12))) x9))) (prim0 (λ x9 . and (x9 ∈ x0) (∀ x10 : ο . (∀ x11 . and (x11 ∈ x0) (x8 = x6 x9 x11) ⟶ x10) ⟶ x10)))))) |
|