Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGFV..
/
da642..
PUcza..
/
c03c2..
vout
PrGFV..
/
1e907..
0.10 bars
TMGn7..
/
04dd6..
ownership of
98c5b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZK9..
/
4fb5a..
ownership of
eb575..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbai..
/
aa395..
ownership of
649f4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYrd..
/
3c41a..
ownership of
a0cbd..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPUb..
/
34279..
ownership of
95d4e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLog..
/
81a63..
ownership of
3d24c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGPo..
/
dd1ff..
ownership of
8ecf9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbnc..
/
fd2e9..
ownership of
95df5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTUM..
/
cf07d..
ownership of
c307e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMWLa..
/
0226a..
ownership of
4807e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMUgS..
/
fcf50..
ownership of
3d202..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMKXL..
/
1385d..
ownership of
7f949..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTQD..
/
7691d..
ownership of
3fdc9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGMe..
/
56938..
ownership of
8d7c2..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFBi..
/
c3a78..
ownership of
6cf45..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMMaj..
/
4bf07..
ownership of
20af6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMY8Q..
/
94c2f..
ownership of
11cde..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZ8N..
/
dbd4a..
ownership of
6d206..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFbV..
/
83f20..
ownership of
40701..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHP6..
/
c3960..
ownership of
13e5f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcFg..
/
a8d3e..
ownership of
ef8a4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMHvN..
/
d2a6e..
ownership of
3b29b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTWU..
/
cebed..
ownership of
74232..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMceo..
/
fd3ff..
ownership of
37052..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLrd..
/
a80d2..
ownership of
e16f8..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF1B..
/
95d0a..
ownership of
39323..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPYb..
/
9f75b..
ownership of
71c3a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMEgZ..
/
66d8e..
ownership of
92b49..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbCs..
/
708de..
ownership of
06611..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TML5W..
/
82109..
ownership of
0034e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMPTN..
/
74be0..
ownership of
2227c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTfp..
/
bfaf3..
ownership of
681ee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRHR..
/
0da34..
ownership of
0d830..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYkT..
/
41a5b..
ownership of
42361..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMaTq..
/
72ab1..
ownership of
86e8c..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdPs..
/
be4b8..
ownership of
1e1a9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUeuA..
/
fc47a..
doc published by
PrCmT..
Known
df_md__df_dmd__df_at__df_dp2__df_dp__df_xdiv__ax_xrssca__ax_xrsvsca__df_omnd__df_ogrp__df_sgns__df_inftm__df_archi__df_slmd__df_orng__df_ofld__df_resv__df_smat
:
∀ x0 : ο .
(
wceq
cmd
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cch
)
(
wcel
(
cv
x2
)
cch
)
)
(
wral
(
λ x3 .
wss
(
cv
x3
)
(
cv
x2
)
⟶
wceq
(
cin
(
co
(
cv
x3
)
(
cv
x1
)
chj
)
(
cv
x2
)
)
(
co
(
cv
x3
)
(
cin
(
cv
x1
)
(
cv
x2
)
)
chj
)
)
(
λ x3 .
cch
)
)
)
)
⟶
wceq
cdmd
(
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
cch
)
(
wcel
(
cv
x2
)
cch
)
)
(
wral
(
λ x3 .
wss
(
cv
x2
)
(
cv
x3
)
⟶
wceq
(
co
(
cin
(
cv
x3
)
(
cv
x1
)
)
(
cv
x2
)
chj
)
(
cin
(
cv
x3
)
(
co
(
cv
x1
)
(
cv
x2
)
chj
)
)
)
(
λ x3 .
cch
)
)
)
)
⟶
wceq
cat
(
crab
(
λ x1 .
wbr
c0h
(
cv
x1
)
ccv
)
(
λ x1 .
cch
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cdp2
x1
x2
)
(
co
x1
(
co
x2
(
cdc
c1
cc0
)
cdiv
)
caddc
)
)
⟶
wceq
cdp
(
cmpt2
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cr
)
(
λ x1 x2 .
cdp2
(
cv
x1
)
(
cv
x2
)
)
)
⟶
wceq
cxdiv
(
cmpt2
(
λ x1 x2 .
cxr
)
(
λ x1 x2 .
cdif
cr
(
csn
cc0
)
)
(
λ x1 x2 .
crio
(
λ x3 .
wceq
(
co
(
cv
x2
)
(
cv
x3
)
cxmu
)
(
cv
x1
)
)
(
λ x3 .
cxr
)
)
)
⟶
wceq
crefld
(
cfv
cxrs
csca
)
⟶
wceq
cxmu
(
cfv
cxrs
cvsca
)
⟶
wceq
comnd
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wa
(
wcel
(
cv
x1
)
ctos
)
(
wral
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wbr
(
cv
x5
)
(
cv
x6
)
(
cv
x4
)
⟶
wbr
(
co
(
cv
x5
)
(
cv
x7
)
(
cv
x3
)
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
λ x5 .
cv
x2
)
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cmnd
)
)
⟶
wceq
cogrp
(
cin
cgrp
comnd
)
⟶
wceq
csgns
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
cfv
(
cv
x1
)
cbs
)
(
λ x2 .
cif
(
wceq
(
cv
x2
)
(
cfv
(
cv
x1
)
c0g
)
)
cc0
(
cif
(
wbr
(
cfv
(
cv
x1
)
c0g
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplt
)
)
c1
(
cneg
c1
)
)
)
)
)
⟶
wceq
cinftm
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
copab
(
λ x2 x3 .
wa
(
wa
(
wcel
(
cv
x2
)
(
cfv
(
cv
x1
)
cbs
)
)
(
wcel
(
cv
x3
)
(
cfv
(
cv
x1
)
cbs
)
)
)
(
wa
(
wbr
(
cfv
(
cv
x1
)
c0g
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cplt
)
)
(
wral
(
λ x4 .
wbr
(
co
(
cv
x4
)
(
cv
x2
)
(
cfv
(
cv
x1
)
cmg
)
)
(
cv
x3
)
(
cfv
(
cv
x1
)
cplt
)
)
(
λ x4 .
cn
)
)
)
)
)
)
⟶
wceq
carchi
(
cab
(
λ x1 .
wceq
(
cfv
(
cv
x1
)
cinftm
)
c0
)
)
⟶
wceq
cslmd
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wsbc
(
λ x8 .
wa
(
wcel
(
cv
x5
)
csrg
)
(
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wral
(
λ x12 .
wa
(
w3a
(
wcel
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x4
)
)
(
cv
x2
)
)
(
wceq
(
co
(
cv
x10
)
(
co
(
cv
x12
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x4
)
)
(
co
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x4
)
)
(
co
(
cv
x10
)
(
cv
x11
)
(
cv
x4
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x7
)
)
(
cv
x12
)
(
cv
x4
)
)
(
co
(
co
(
cv
x9
)
(
cv
x12
)
(
cv
x4
)
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x4
)
)
(
cv
x3
)
)
)
)
(
w3a
(
wceq
(
co
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x8
)
)
(
cv
x12
)
(
cv
x4
)
)
(
co
(
cv
x9
)
(
co
(
cv
x10
)
(
cv
x12
)
(
cv
x4
)
)
(
cv
x4
)
)
)
(
wceq
(
co
(
cfv
(
cv
x5
)
cur
)
(
cv
x12
)
(
cv
x4
)
)
(
cv
x12
)
)
(
wceq
(
co
(
cfv
(
cv
x5
)
c0g
)
(
cv
x12
)
(
cv
x4
)
)
(
cfv
(
cv
x1
)
c0g
)
)
)
)
(
λ x12 .
cv
x2
)
)
(
λ x11 .
cv
x2
)
)
(
λ x10 .
cv
x6
)
)
(
λ x9 .
cv
x6
)
)
)
(
cfv
(
cv
x5
)
cmulr
)
)
(
cfv
(
cv
x5
)
cplusg
)
)
(
cfv
(
cv
x5
)
cbs
)
)
(
cfv
(
cv
x1
)
csca
)
)
(
cfv
(
cv
x1
)
cvsca
)
)
(
cfv
(
cv
x1
)
cplusg
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
ccmn
)
)
⟶
wceq
corng
(
crab
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wral
(
λ x6 .
wral
(
λ x7 .
wa
(
wbr
(
cv
x3
)
(
cv
x6
)
(
cv
x5
)
)
(
wbr
(
cv
x3
)
(
cv
x7
)
(
cv
x5
)
)
⟶
wbr
(
cv
x3
)
(
co
(
cv
x6
)
(
cv
x7
)
(
cv
x4
)
)
(
cv
x5
)
)
(
λ x7 .
cv
x2
)
)
(
λ x6 .
cv
x2
)
)
(
cfv
(
cv
x1
)
cple
)
)
(
cfv
(
cv
x1
)
cmulr
)
)
(
cfv
(
cv
x1
)
c0g
)
)
(
cfv
(
cv
x1
)
cbs
)
)
(
λ x1 .
cin
crg
cogrp
)
)
⟶
wceq
cofld
(
cin
cfield
corng
)
⟶
wceq
cresv
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cif
(
wss
(
cfv
(
cfv
(
cv
x1
)
csca
)
cbs
)
(
cv
x2
)
)
(
cv
x1
)
(
co
(
cv
x1
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cfv
(
cv
x1
)
csca
)
(
cv
x2
)
cress
)
)
csts
)
)
)
⟶
wceq
csmat
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt2
(
λ x2 x3 .
cn
)
(
λ x2 x3 .
cn
)
(
λ x2 x3 .
ccom
(
cv
x1
)
(
cmpt2
(
λ x4 x5 .
cn
)
(
λ x4 x5 .
cn
)
(
λ x4 x5 .
cop
(
cif
(
wbr
(
cv
x4
)
(
cv
x2
)
clt
)
(
cv
x4
)
(
co
(
cv
x4
)
c1
caddc
)
)
(
cif
(
wbr
(
cv
x5
)
(
cv
x3
)
clt
)
(
cv
x5
)
(
co
(
cv
x5
)
c1
caddc
)
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_md
:
wceq
cmd
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cch
)
(
wcel
(
cv
x1
)
cch
)
)
(
wral
(
λ x2 .
wss
(
cv
x2
)
(
cv
x1
)
⟶
wceq
(
cin
(
co
(
cv
x2
)
(
cv
x0
)
chj
)
(
cv
x1
)
)
(
co
(
cv
x2
)
(
cin
(
cv
x0
)
(
cv
x1
)
)
chj
)
)
(
λ x2 .
cch
)
)
)
)
(proof)
Theorem
df_dmd
:
wceq
cdmd
(
copab
(
λ x0 x1 .
wa
(
wa
(
wcel
(
cv
x0
)
cch
)
(
wcel
(
cv
x1
)
cch
)
)
(
wral
(
λ x2 .
wss
(
cv
x1
)
(
cv
x2
)
⟶
wceq
(
co
(
cin
(
cv
x2
)
(
cv
x0
)
)
(
cv
x1
)
chj
)
(
cin
(
cv
x2
)
(
co
(
cv
x0
)
(
cv
x1
)
chj
)
)
)
(
λ x2 .
cch
)
)
)
)
(proof)
Theorem
df_at
:
wceq
cat
(
crab
(
λ x0 .
wbr
c0h
(
cv
x0
)
ccv
)
(
λ x0 .
cch
)
)
(proof)
Theorem
df_dp2
:
∀ x0 x1 :
ι → ο
.
wceq
(
cdp2
x0
x1
)
(
co
x0
(
co
x1
(
cdc
c1
cc0
)
cdiv
)
caddc
)
(proof)
Theorem
df_dp
:
wceq
cdp
(
cmpt2
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cr
)
(
λ x0 x1 .
cdp2
(
cv
x0
)
(
cv
x1
)
)
)
(proof)
Theorem
df_xdiv
:
wceq
cxdiv
(
cmpt2
(
λ x0 x1 .
cxr
)
(
λ x0 x1 .
cdif
cr
(
csn
cc0
)
)
(
λ x0 x1 .
crio
(
λ x2 .
wceq
(
co
(
cv
x1
)
(
cv
x2
)
cxmu
)
(
cv
x0
)
)
(
λ x2 .
cxr
)
)
)
(proof)
Theorem
ax_xrssca
:
wceq
crefld
(
cfv
cxrs
csca
)
(proof)
Theorem
ax_xrsvsca
:
wceq
cxmu
(
cfv
cxrs
cvsca
)
(proof)
Theorem
df_omnd
:
wceq
comnd
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wa
(
wcel
(
cv
x0
)
ctos
)
(
wral
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wbr
(
cv
x4
)
(
cv
x5
)
(
cv
x3
)
⟶
wbr
(
co
(
cv
x4
)
(
cv
x6
)
(
cv
x2
)
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x2
)
)
(
cv
x3
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
λ x4 .
cv
x1
)
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cmnd
)
)
(proof)
Theorem
df_ogrp
:
wceq
cogrp
(
cin
cgrp
comnd
)
(proof)
Theorem
df_sgns
:
wceq
csgns
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
cfv
(
cv
x0
)
cbs
)
(
λ x1 .
cif
(
wceq
(
cv
x1
)
(
cfv
(
cv
x0
)
c0g
)
)
cc0
(
cif
(
wbr
(
cfv
(
cv
x0
)
c0g
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplt
)
)
c1
(
cneg
c1
)
)
)
)
)
(proof)
Theorem
df_inftm
:
wceq
cinftm
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
copab
(
λ x1 x2 .
wa
(
wa
(
wcel
(
cv
x1
)
(
cfv
(
cv
x0
)
cbs
)
)
(
wcel
(
cv
x2
)
(
cfv
(
cv
x0
)
cbs
)
)
)
(
wa
(
wbr
(
cfv
(
cv
x0
)
c0g
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cplt
)
)
(
wral
(
λ x3 .
wbr
(
co
(
cv
x3
)
(
cv
x1
)
(
cfv
(
cv
x0
)
cmg
)
)
(
cv
x2
)
(
cfv
(
cv
x0
)
cplt
)
)
(
λ x3 .
cn
)
)
)
)
)
)
(proof)
Theorem
df_archi
:
wceq
carchi
(
cab
(
λ x0 .
wceq
(
cfv
(
cv
x0
)
cinftm
)
c0
)
)
(proof)
Theorem
df_slmd
:
wceq
cslmd
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wsbc
(
λ x5 .
wsbc
(
λ x6 .
wsbc
(
λ x7 .
wa
(
wcel
(
cv
x4
)
csrg
)
(
wral
(
λ x8 .
wral
(
λ x9 .
wral
(
λ x10 .
wral
(
λ x11 .
wa
(
w3a
(
wcel
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x1
)
)
(
wceq
(
co
(
cv
x9
)
(
co
(
cv
x11
)
(
cv
x10
)
(
cv
x2
)
)
(
cv
x3
)
)
(
co
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x3
)
)
(
co
(
cv
x9
)
(
cv
x10
)
(
cv
x3
)
)
(
cv
x2
)
)
)
(
wceq
(
co
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x6
)
)
(
cv
x11
)
(
cv
x3
)
)
(
co
(
co
(
cv
x8
)
(
cv
x11
)
(
cv
x3
)
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x2
)
)
)
)
(
w3a
(
wceq
(
co
(
co
(
cv
x8
)
(
cv
x9
)
(
cv
x7
)
)
(
cv
x11
)
(
cv
x3
)
)
(
co
(
cv
x8
)
(
co
(
cv
x9
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x3
)
)
)
(
wceq
(
co
(
cfv
(
cv
x4
)
cur
)
(
cv
x11
)
(
cv
x3
)
)
(
cv
x11
)
)
(
wceq
(
co
(
cfv
(
cv
x4
)
c0g
)
(
cv
x11
)
(
cv
x3
)
)
(
cfv
(
cv
x0
)
c0g
)
)
)
)
(
λ x11 .
cv
x1
)
)
(
λ x10 .
cv
x1
)
)
(
λ x9 .
cv
x5
)
)
(
λ x8 .
cv
x5
)
)
)
(
cfv
(
cv
x4
)
cmulr
)
)
(
cfv
(
cv
x4
)
cplusg
)
)
(
cfv
(
cv
x4
)
cbs
)
)
(
cfv
(
cv
x0
)
csca
)
)
(
cfv
(
cv
x0
)
cvsca
)
)
(
cfv
(
cv
x0
)
cplusg
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
ccmn
)
)
(proof)
Theorem
df_orng
:
wceq
corng
(
crab
(
λ x0 .
wsbc
(
λ x1 .
wsbc
(
λ x2 .
wsbc
(
λ x3 .
wsbc
(
λ x4 .
wral
(
λ x5 .
wral
(
λ x6 .
wa
(
wbr
(
cv
x2
)
(
cv
x5
)
(
cv
x4
)
)
(
wbr
(
cv
x2
)
(
cv
x6
)
(
cv
x4
)
)
⟶
wbr
(
cv
x2
)
(
co
(
cv
x5
)
(
cv
x6
)
(
cv
x3
)
)
(
cv
x4
)
)
(
λ x6 .
cv
x1
)
)
(
λ x5 .
cv
x1
)
)
(
cfv
(
cv
x0
)
cple
)
)
(
cfv
(
cv
x0
)
cmulr
)
)
(
cfv
(
cv
x0
)
c0g
)
)
(
cfv
(
cv
x0
)
cbs
)
)
(
λ x0 .
cin
crg
cogrp
)
)
(proof)
Theorem
df_ofld
:
wceq
cofld
(
cin
cfield
corng
)
(proof)
Theorem
df_resv
:
wceq
cresv
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cif
(
wss
(
cfv
(
cfv
(
cv
x0
)
csca
)
cbs
)
(
cv
x1
)
)
(
cv
x0
)
(
co
(
cv
x0
)
(
cop
(
cfv
cnx
csca
)
(
co
(
cfv
(
cv
x0
)
csca
)
(
cv
x1
)
cress
)
)
csts
)
)
)
(proof)
Theorem
df_smat
:
wceq
csmat
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt2
(
λ x1 x2 .
cn
)
(
λ x1 x2 .
cn
)
(
λ x1 x2 .
ccom
(
cv
x0
)
(
cmpt2
(
λ x3 x4 .
cn
)
(
λ x3 x4 .
cn
)
(
λ x3 x4 .
cop
(
cif
(
wbr
(
cv
x3
)
(
cv
x1
)
clt
)
(
cv
x3
)
(
co
(
cv
x3
)
c1
caddc
)
)
(
cif
(
wbr
(
cv
x4
)
(
cv
x2
)
clt
)
(
cv
x4
)
(
co
(
cv
x4
)
c1
caddc
)
)
)
)
)
)
)
(proof)