Search for blocks/addresses/...
Proofgold Signed Transaction
vin
Pr48i..
/
f0dce..
PUN8U..
/
d6849..
vout
Pr48i..
/
d3472..
0.07 bars
TMLac..
/
c0684..
ownership of
baaae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWy5..
/
d5ebd..
ownership of
b0aa0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHqi..
/
fbf20..
ownership of
faaae..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKDw..
/
ee40b..
ownership of
4539e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHAW..
/
06474..
ownership of
eafcc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWBy..
/
b7d95..
ownership of
c352d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRmY..
/
7e225..
ownership of
47346..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa9w..
/
e1c45..
ownership of
bf415..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQbr..
/
d36a0..
ownership of
e4e3e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMadH..
/
0728e..
ownership of
6b062..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbEt..
/
d8483..
ownership of
c5538..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPTJ..
/
cca1b..
ownership of
b1861..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKTw..
/
6a331..
ownership of
f84ed..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMS9b..
/
851ec..
ownership of
7f709..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYBt..
/
3db4b..
ownership of
3365a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYXz..
/
5f115..
ownership of
fc26b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZgK..
/
5c7df..
ownership of
e6aa6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNv6..
/
35d9e..
ownership of
def31..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbvM..
/
97903..
ownership of
175e2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXAs..
/
58602..
ownership of
eddc5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHQq..
/
5712e..
ownership of
ec2c2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdUr..
/
e9294..
ownership of
c073c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX5g..
/
de9ec..
ownership of
19bac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcGq..
/
5f4dd..
ownership of
c53cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJgB..
/
6f201..
ownership of
4c101..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXiW..
/
d22cd..
ownership of
83ab2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYFX..
/
94f23..
ownership of
81ef7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUgW..
/
db23f..
ownership of
2712e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMaWM..
/
da31a..
ownership of
27519..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcUC..
/
3ed79..
ownership of
75bbe..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbP6..
/
59827..
ownership of
9827a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHXW..
/
58aa3..
ownership of
2c202..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNFe..
/
85fbf..
ownership of
584cf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT8F..
/
e9130..
ownership of
3eee9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUmd..
/
5e9f5..
ownership of
ec4c7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNwr..
/
e5c9a..
ownership of
78056..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFp2..
/
76ff0..
ownership of
25808..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEjR..
/
b9e7e..
ownership of
efc9f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWgZ..
/
632ff..
ownership of
9baa0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG42..
/
1b956..
ownership of
18202..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUMXD..
/
2e775..
doc published by
PrGxv..
Param
SNo
SNo
:
ι
→
ο
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
omega
omega
:
ι
Param
bij
bij
:
ι
→
ι
→
(
ι
→
ι
) →
ο
Definition
equip
equip
:=
λ x0 x1 .
∀ x2 : ο .
(
∀ x3 :
ι → ι
.
bij
x0
x1
x3
⟶
x2
)
⟶
x2
Definition
finite
finite
:=
λ x0 .
∀ x1 : ο .
(
∀ x2 .
and
(
x2
∈
omega
)
(
equip
x0
x2
)
⟶
x1
)
⟶
x1
Param
SNoLe
SNoLe
:
ι
→
ι
→
ο
Definition
SNo_max_of
SNo_max_of
:=
λ x0 x1 .
and
(
and
(
x1
∈
x0
)
(
SNo
x1
)
)
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
⟶
SNoLe
x2
x1
)
Param
nat_p
nat_p
:
ι
→
ο
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Param
ordsucc
ordsucc
:
ι
→
ι
Known
nat_inv
nat_inv
:
∀ x0 .
nat_p
x0
⟶
or
(
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
and
(
nat_p
x2
)
(
x0
=
ordsucc
x2
)
⟶
x1
)
⟶
x1
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Definition
False
False
:=
∀ x0 : ο .
x0
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Known
bijE
bijE
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
bij
x0
x1
x2
⟶
∀ x3 : ο .
(
(
∀ x4 .
x4
∈
x0
⟶
x2
x4
∈
x1
)
⟶
(
∀ x4 .
x4
∈
x0
⟶
∀ x5 .
x5
∈
x0
⟶
x2
x4
=
x2
x5
⟶
x4
=
x5
)
⟶
(
∀ x4 .
x4
∈
x1
⟶
∀ x5 : ο .
(
∀ x6 .
and
(
x6
∈
x0
)
(
x2
x6
=
x4
)
⟶
x5
)
⟶
x5
)
⟶
x3
)
⟶
x3
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
Empty_eq
Empty_eq
:
∀ x0 .
(
∀ x1 .
nIn
x1
x0
)
⟶
x0
=
0
Known
EmptyE
EmptyE
:
∀ x0 .
nIn
x0
0
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Known
equip_sym
equip_sym
:
∀ x0 x1 .
equip
x0
x1
⟶
equip
x1
x0
Known
and3I
and3I
:
∀ x0 x1 x2 : ο .
x0
⟶
x1
⟶
x2
⟶
and
(
and
x0
x1
)
x2
Known
cases_1
cases_1
:
∀ x0 .
x0
∈
1
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
x1
x0
Known
SNoLe_ref
SNoLe_ref
:
∀ x0 .
SNoLe
x0
x0
Known
In_0_1
In_0_1
:
0
∈
1
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
bijI
bijI
:
∀ x0 x1 .
∀ x2 :
ι → ι
.
(
∀ x3 .
x3
∈
x0
⟶
x2
x3
∈
x1
)
⟶
(
∀ x3 .
x3
∈
x0
⟶
∀ x4 .
x4
∈
x0
⟶
x2
x3
=
x2
x4
⟶
x3
=
x4
)
⟶
(
∀ x3 .
x3
∈
x1
⟶
∀ x4 : ο .
(
∀ x5 .
and
(
x5
∈
x0
)
(
x2
x5
=
x3
)
⟶
x4
)
⟶
x4
)
⟶
bij
x0
x1
x2
Known
ReplI
ReplI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
∈
prim5
x0
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Known
ReplE_impred
ReplE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
prim5
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
=
x1
x4
⟶
x3
)
⟶
x3
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Param
SNoLt
SNoLt
:
ι
→
ι
→
ο
Known
SNoLtLe_or
SNoLtLe_or
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
or
(
SNoLt
x0
x1
)
(
SNoLe
x1
x0
)
Known
ordsuccE
ordsuccE
:
∀ x0 x1 .
x1
∈
ordsucc
x0
⟶
or
(
x1
∈
x0
)
(
x1
=
x0
)
Known
SNoLe_tra
SNoLe_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLe
x1
x2
⟶
SNoLe
x0
x2
Known
SNoLtLe
SNoLtLe
:
∀ x0 x1 .
SNoLt
x0
x1
⟶
SNoLe
x0
x1
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Theorem
finite_max_exists
finite_max_exists
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
SNo
x1
)
⟶
finite
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
SNo_max_of
x0
x2
⟶
x1
)
⟶
x1
(proof)
Param
SNo_min_of
SNo_min_of
:
ι
→
ι
→
ο
Param
minus_SNo
minus_SNo
:
ι
→
ι
Known
SNo_minus_SNo
SNo_minus_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
minus_SNo
x0
)
Known
equip_tra
equip_tra
:
∀ x0 x1 x2 .
equip
x0
x1
⟶
equip
x1
x2
⟶
equip
x0
x2
Known
minus_SNo_invol
minus_SNo_invol
:
∀ x0 .
SNo
x0
⟶
minus_SNo
(
minus_SNo
x0
)
=
x0
Known
minus_SNo_max_min'
minus_SNo_max_min
:
∀ x0 x1 .
(
∀ x2 .
x2
∈
x0
⟶
SNo
x2
)
⟶
SNo_max_of
(
prim5
x0
minus_SNo
)
x1
⟶
SNo_min_of
x0
(
minus_SNo
x1
)
Theorem
finite_min_exists
finite_min_exists
:
∀ x0 .
(
∀ x1 .
x1
∈
x0
⟶
SNo
x1
)
⟶
finite
x0
⟶
(
x0
=
0
⟶
∀ x1 : ο .
x1
)
⟶
∀ x1 : ο .
(
∀ x2 .
SNo_min_of
x0
x2
⟶
x1
)
⟶
x1
(proof)
Param
SNoS_
SNoS_
:
ι
→
ι
Param
ordinal
ordinal
:
ι
→
ο
Param
SNo_
SNo_
:
ι
→
ι
→
ο
Known
SNoS_E
SNoS_E
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
x0
)
(
SNo_
x3
x1
)
⟶
x2
)
⟶
x2
Known
ordinal_Empty
ordinal_Empty
:
ordinal
0
Theorem
ec4c7..
:
SNoS_
0
=
0
(proof)
Param
add_SNo
add_SNo
:
ι
→
ι
→
ι
Known
add_SNo_0R
add_SNo_0R
:
∀ x0 .
SNo
x0
⟶
add_SNo
x0
0
=
x0
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
add_SNo_1_ordsucc
add_SNo_1_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
add_SNo
x0
1
=
ordsucc
x0
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
add_SNo_assoc
add_SNo_assoc
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
(
add_SNo
x1
x2
)
=
add_SNo
(
add_SNo
x0
x1
)
x2
Known
nat_p_SNo
nat_p_SNo
:
∀ x0 .
nat_p
x0
⟶
SNo
x0
Known
SNo_1
SNo_1
:
SNo
1
Known
add_SNo_In_omega
add_SNo_In_omega
:
∀ x0 .
x0
∈
omega
⟶
∀ x1 .
x1
∈
omega
⟶
add_SNo
x0
x1
∈
omega
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Known
add_SNo_com
add_SNo_com
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
x0
x1
=
add_SNo
x1
x0
Known
SNo_add_SNo
SNo_add_SNo
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNo
(
add_SNo
x0
x1
)
Known
add_SNo_minus_L2
add_SNo_minus_L2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
add_SNo
(
minus_SNo
x0
)
(
add_SNo
x0
x1
)
=
x1
Known
omega_SNo
omega_SNo
:
∀ x0 .
x0
∈
omega
⟶
SNo
x0
Theorem
add_SNo_omega_In_cases
add_SNo_omega_In_cases
:
∀ x0 x1 .
x1
∈
omega
⟶
∀ x2 .
nat_p
x2
⟶
x0
∈
add_SNo
x1
x2
⟶
or
(
x0
∈
x1
)
(
add_SNo
x0
(
minus_SNo
x1
)
∈
x2
)
(proof)
Param
binintersect
binintersect
:
ι
→
ι
→
ι
Param
SNo_extend0
SNo_extend0
:
ι
→
ι
Param
SNoElts_
SNoElts_
:
ι
→
ι
Param
SNoLev
SNoLev
:
ι
→
ι
Param
iff
iff
:
ο
→
ο
→
ο
Definition
PNoEq_
PNoEq_
:=
λ x0 .
λ x1 x2 :
ι → ο
.
∀ x3 .
x3
∈
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
Definition
SNoEq_
SNoEq_
:=
λ x0 x1 x2 .
PNoEq_
x0
(
λ x3 .
x3
∈
x1
)
(
λ x3 .
x3
∈
x2
)
Known
SNo_eq
SNo_eq
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
=
SNoLev
x1
⟶
SNoEq_
(
SNoLev
x0
)
x0
x1
⟶
x0
=
x1
Known
restr_SNo
restr_SNo
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNo
(
binintersect
x0
(
SNoElts_
x1
)
)
Known
restr_SNoLev
restr_SNoLev
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNoLev
(
binintersect
x0
(
SNoElts_
x1
)
)
=
x1
Known
SNoEq_sym_
SNoEq_sym_
:
∀ x0 x1 x2 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x1
Known
SNoEq_tra_
SNoEq_tra_
:
∀ x0 x1 x2 x3 .
SNoEq_
x0
x1
x2
⟶
SNoEq_
x0
x2
x3
⟶
SNoEq_
x0
x1
x3
Known
restr_SNoEq
restr_SNoEq
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNoEq_
x1
(
binintersect
x0
(
SNoElts_
x1
)
)
x0
Known
SNo_extend0_SNoEq
SNo_extend0_SNoEq
:
∀ x0 .
SNo
x0
⟶
SNoEq_
(
SNoLev
x0
)
(
SNo_extend0
x0
)
x0
Known
SNo_extend0_SNoLev
SNo_extend0_SNoLev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
SNo_extend0
x0
)
=
ordsucc
(
SNoLev
x0
)
Known
SNo_extend0_SNo
SNo_extend0_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
SNo_extend0
x0
)
Theorem
SNo_extend0_restr_eq
SNo_extend0_restr_eq
:
∀ x0 .
SNo
x0
⟶
x0
=
binintersect
(
SNo_extend0
x0
)
(
SNoElts_
(
SNoLev
x0
)
)
(proof)
Param
SNo_extend1
SNo_extend1
:
ι
→
ι
Known
SNo_extend1_SNoEq
SNo_extend1_SNoEq
:
∀ x0 .
SNo
x0
⟶
SNoEq_
(
SNoLev
x0
)
(
SNo_extend1
x0
)
x0
Known
SNo_extend1_SNoLev
SNo_extend1_SNoLev
:
∀ x0 .
SNo
x0
⟶
SNoLev
(
SNo_extend1
x0
)
=
ordsucc
(
SNoLev
x0
)
Known
SNo_extend1_SNo
SNo_extend1_SNo
:
∀ x0 .
SNo
x0
⟶
SNo
(
SNo_extend1
x0
)
Theorem
SNo_extend1_restr_eq
SNo_extend1_restr_eq
:
∀ x0 .
SNo
x0
⟶
x0
=
binintersect
(
SNo_extend1
x0
)
(
SNoElts_
(
SNoLev
x0
)
)
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
exp_SNo_nat
exp_SNo_nat
:
ι
→
ι
→
ι
Known
exp_SNo_nat_0
exp_SNo_nat_0
:
∀ x0 .
SNo
x0
⟶
exp_SNo_nat
x0
0
=
1
Known
SNo_2
SNo_2
:
SNo
2
Known
SepI
SepI
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
x0
⟶
x1
x2
⟶
x2
∈
Sep
x0
x1
Known
SNoS_I
SNoS_I
:
∀ x0 .
ordinal
x0
⟶
∀ x1 x2 .
x2
∈
x0
⟶
SNo_
x2
x1
⟶
x1
∈
SNoS_
x0
Known
omega_ordinal
omega_ordinal
:
ordinal
omega
Known
nat_0
nat_0
:
nat_p
0
Known
ordinal_SNo_
ordinal_SNo_
:
∀ x0 .
ordinal
x0
⟶
SNo_
x0
x0
Known
SNoLev_0
SNoLev_0
:
SNoLev
0
=
0
Known
SepE
SepE
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
x2
∈
Sep
x0
x1
⟶
and
(
x2
∈
x0
)
(
x1
x2
)
Known
SNoS_E2
SNoS_E2
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
SNoS_
x0
⟶
∀ x2 : ο .
(
SNoLev
x1
∈
x0
⟶
ordinal
(
SNoLev
x1
)
⟶
SNo
x1
⟶
SNo_
(
SNoLev
x1
)
x1
⟶
x2
)
⟶
x2
Known
SNo_0
SNo_0
:
SNo
0
Param
mul_SNo
mul_SNo
:
ι
→
ι
→
ι
Known
exp_SNo_nat_S
exp_SNo_nat_S
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
exp_SNo_nat
x0
(
ordsucc
x1
)
=
mul_SNo
x0
(
exp_SNo_nat
x0
x1
)
Known
add_SNo_1_1_2
add_SNo_1_1_2
:
add_SNo
1
1
=
2
Known
mul_SNo_distrR
mul_SNo_distrR
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
mul_SNo
(
add_SNo
x0
x1
)
x2
=
add_SNo
(
mul_SNo
x0
x2
)
(
mul_SNo
x1
x2
)
Known
SNo_exp_SNo_nat
SNo_exp_SNo_nat
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNo
(
exp_SNo_nat
x0
x1
)
Known
mul_SNo_oneL
mul_SNo_oneL
:
∀ x0 .
SNo
x0
⟶
mul_SNo
1
x0
=
x0
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
ordinal_SNoLt_In
ordinal_SNoLt_In
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
SNoLt
x0
x1
⟶
x0
∈
x1
Known
SNoLt_tra
SNoLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
ordinal_SNo
ordinal_SNo
:
∀ x0 .
ordinal
x0
⟶
SNo
x0
Known
add_SNo_Lt2
add_SNo_Lt2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLt
x1
x2
⟶
SNoLt
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
exp_SNo_nat_pos
exp_SNo_nat_pos
:
∀ x0 .
SNo
x0
⟶
SNoLt
0
x0
⟶
∀ x1 .
nat_p
x1
⟶
SNoLt
0
(
exp_SNo_nat
x0
x1
)
Known
SNoLt_0_2
SNoLt_0_2
:
SNoLt
0
2
Known
add_SNo_ordinal_ordinal
add_SNo_ordinal_ordinal
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
ordinal
x1
⟶
ordinal
(
add_SNo
x0
x1
)
Known
iff_trans
iff_trans
:
∀ x0 x1 x2 : ο .
iff
x0
x1
⟶
iff
x1
x2
⟶
iff
x0
x2
Known
iff_sym
iff_sym
:
∀ x0 x1 : ο .
iff
x0
x1
⟶
iff
x1
x0
Known
iffI
iffI
:
∀ x0 x1 : ο .
(
x0
⟶
x1
)
⟶
(
x1
⟶
x0
)
⟶
iff
x0
x1
Known
SNoLt_irref
SNoLt_irref
:
∀ x0 .
not
(
SNoLt
x0
x0
)
Known
SNoLeLt_tra
SNoLeLt_tra
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x0
x1
⟶
SNoLt
x1
x2
⟶
SNoLt
x0
x2
Known
add_SNo_Le2
add_SNo_Le2
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
SNoLe
x1
x2
⟶
SNoLe
(
add_SNo
x0
x1
)
(
add_SNo
x0
x2
)
Known
omega_nonneg
omega_nonneg
:
∀ x0 .
x0
∈
omega
⟶
SNoLe
0
x0
Known
add_SNo_cancel_L
add_SNo_cancel_L
:
∀ x0 x1 x2 .
SNo
x0
⟶
SNo
x1
⟶
SNo
x2
⟶
add_SNo
x0
x1
=
add_SNo
x0
x2
⟶
x1
=
x2
Known
omega_ordsucc
omega_ordsucc
:
∀ x0 .
x0
∈
omega
⟶
ordsucc
x0
∈
omega
Known
SNo_extend1_SNo_
SNo_extend1_SNo_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
ordsucc
(
SNoLev
x0
)
)
(
SNo_extend1
x0
)
Known
SNo_extend1_In
SNo_extend1_In
:
∀ x0 .
SNo
x0
⟶
SNoLev
x0
∈
SNo_extend1
x0
Known
SNo_extend0_SNo_
SNo_extend0_SNo_
:
∀ x0 .
SNo
x0
⟶
SNo_
(
ordsucc
(
SNoLev
x0
)
)
(
SNo_extend0
x0
)
Known
SNo_extend0_nIn
SNo_extend0_nIn
:
∀ x0 .
SNo
x0
⟶
nIn
(
SNoLev
x0
)
(
SNo_extend0
x0
)
Known
add_SNo_minus_SNo_linv
add_SNo_minus_SNo_linv
:
∀ x0 .
SNo
x0
⟶
add_SNo
(
minus_SNo
x0
)
x0
=
0
Known
nat_p_trans
nat_p_trans
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
x1
∈
x0
⟶
nat_p
x1
Known
nat_p_ordinal
nat_p_ordinal
:
∀ x0 .
nat_p
x0
⟶
ordinal
x0
Known
ordinal_In_SNoLt
ordinal_In_SNoLt
:
∀ x0 .
ordinal
x0
⟶
∀ x1 .
x1
∈
x0
⟶
SNoLt
x1
x0
Known
restr_SNo_
restr_SNo_
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoLev
x0
⟶
SNo_
x1
(
binintersect
x0
(
SNoElts_
x1
)
)
Known
nat_exp_SNo_nat
nat_exp_SNo_nat
:
∀ x0 .
nat_p
x0
⟶
∀ x1 .
nat_p
x1
⟶
nat_p
(
exp_SNo_nat
x0
x1
)
Known
nat_2
nat_2
:
nat_p
2
Theorem
SNoS_omega_Lev_equip
SNoS_omega_Lev_equip
:
∀ x0 .
nat_p
x0
⟶
equip
{x1 ∈
SNoS_
omega
|
SNoLev
x1
=
x0
}
(
exp_SNo_nat
2
x0
)
(proof)
Theorem
equip_0_Empty
equip_0_Empty
:
∀ x0 .
equip
x0
0
⟶
x0
=
0
(proof)
Param
binunion
binunion
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Known
set_ext
set_ext
:
∀ x0 x1 .
x0
⊆
x1
⟶
x1
⊆
x0
⟶
x0
=
x1
Known
binunionI1
binunionI1
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
x2
∈
binunion
x0
x1
Known
binunionI2
binunionI2
:
∀ x0 x1 x2 .
x2
∈
x1
⟶
x2
∈
binunion
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Known
binunionE
binunionE
:
∀ x0 x1 x2 .
x2
∈
binunion
x0
x1
⟶
or
(
x2
∈
x0
)
(
x2
∈
x1
)
Known
SingE
SingE
:
∀ x0 x1 .
x1
∈
Sing
x0
⟶
x1
=
x0
Known
In_irref
In_irref
:
∀ x0 .
nIn
x0
x0
Known
ReplE'
ReplE
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x3
∈
x0
⟶
x2
(
x1
x3
)
)
⟶
∀ x3 .
x3
∈
prim5
x0
x1
⟶
x2
x3
Theorem
finite_ind
finite_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 x2 .
finite
x1
⟶
nIn
x2
x1
⟶
x0
x1
⟶
x0
(
binunion
x1
(
Sing
x2
)
)
)
⟶
∀ x1 .
finite
x1
⟶
x0
x1
(proof)
Known
equip_ref
equip_ref
:
∀ x0 .
equip
x0
x0
Theorem
finite_Empty
finite_Empty
:
finite
0
(proof)
Theorem
nat_inv_impred
nat_inv_impred
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
(proof)
Theorem
a0d40..
:
∀ x0 .
nat_p
x0
⟶
∀ x1 :
ι → ο
.
x1
0
⟶
(
∀ x2 .
nat_p
x2
⟶
x1
(
ordsucc
x2
)
)
⟶
x1
x0
(proof)
Known
binunion_Subq_1
binunion_Subq_1
:
∀ x0 x1 .
x0
⊆
binunion
x0
x1
Theorem
adjoin_finite
adjoin_finite
:
∀ x0 x1 .
finite
x0
⟶
finite
(
binunion
x0
(
Sing
x1
)
)
(proof)
Known
binunion_idr
binunion_idr
:
∀ x0 .
binunion
x0
0
=
x0
Known
binunion_asso
binunion_asso
:
∀ x0 x1 x2 .
binunion
x0
(
binunion
x1
x2
)
=
binunion
(
binunion
x0
x1
)
x2
Theorem
binunion_finite
binunion_finite
:
∀ x0 .
finite
x0
⟶
∀ x1 .
finite
x1
⟶
finite
(
binunion
x0
x1
)
(proof)
Param
famunion
famunion
:
ι
→
(
ι
→
ι
) →
ι
Known
famunion_Empty
famunion_Empty
:
∀ x0 :
ι → ι
.
famunion
0
x0
=
0
Known
famunionE_impred
famunionE_impred
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
x2
∈
famunion
x0
x1
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
x0
⟶
x2
∈
x1
x4
⟶
x3
)
⟶
x3
Known
famunionI
famunionI
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
x0
⟶
x3
∈
x1
x2
⟶
x3
∈
famunion
x0
x1
Known
binunionE'
binunionE
:
∀ x0 x1 x2 .
∀ x3 : ο .
(
x2
∈
x0
⟶
x3
)
⟶
(
x2
∈
x1
⟶
x3
)
⟶
x2
∈
binunion
x0
x1
⟶
x3
Theorem
famunion_nat_finite
famunion_nat_finite
:
∀ x0 :
ι → ι
.
∀ x1 .
nat_p
x1
⟶
(
∀ x2 .
x2
∈
x1
⟶
finite
(
x0
x2
)
)
⟶
finite
(
famunion
x1
x0
)
(proof)
Known
SNoS_Subq
SNoS_Subq
:
∀ x0 x1 .
ordinal
x0
⟶
ordinal
x1
⟶
x0
⊆
x1
⟶
SNoS_
x0
⊆
SNoS_
x1
Definition
TransSet
TransSet
:=
λ x0 .
∀ x1 .
x1
∈
x0
⟶
x1
⊆
x0
Known
omega_TransSet
omega_TransSet
:
TransSet
omega
Theorem
SNoS_finite
SNoS_finite
:
∀ x0 .
x0
∈
omega
⟶
finite
(
SNoS_
x0
)
(proof)
Known
Empty_Subq_eq
Empty_Subq_eq
:
∀ x0 .
x0
⊆
0
⟶
x0
=
0
Param
setminus
setminus
:
ι
→
ι
→
ι
Known
setminusI
setminusI
:
∀ x0 x1 x2 .
x2
∈
x0
⟶
nIn
x2
x1
⟶
x2
∈
setminus
x0
x1
Known
setminusE1
setminusE1
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
x2
∈
x0
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Theorem
Subq_finite
Subq_finite
:
∀ x0 .
finite
x0
⟶
∀ x1 .
x1
⊆
x0
⟶
finite
x1
(proof)
Param
SNoL
SNoL
:
ι
→
ι
Known
SNoL_E
SNoL_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoL
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x1
x0
⟶
x2
)
⟶
x2
Known
SNoS_I2
SNoS_I2
:
∀ x0 x1 .
SNo
x0
⟶
SNo
x1
⟶
SNoLev
x0
∈
SNoLev
x1
⟶
x0
∈
SNoS_
(
SNoLev
x1
)
Theorem
SNoS_omega_SNoL_finite
SNoS_omega_SNoL_finite
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
finite
(
SNoL
x0
)
(proof)
Param
SNoR
SNoR
:
ι
→
ι
Known
SNoR_E
SNoR_E
:
∀ x0 .
SNo
x0
⟶
∀ x1 .
x1
∈
SNoR
x0
⟶
∀ x2 : ο .
(
SNo
x1
⟶
SNoLev
x1
∈
SNoLev
x0
⟶
SNoLt
x0
x1
⟶
x2
)
⟶
x2
Theorem
SNoS_omega_SNoR_finite
SNoS_omega_SNoR_finite
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
finite
(
SNoR
x0
)
(proof)
Theorem
SNoS_omega_SNoL_max_exists
SNoS_omega_SNoL_max_exists
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
or
(
SNoL
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
SNo_max_of
(
SNoL
x0
)
x2
⟶
x1
)
⟶
x1
)
(proof)
Theorem
SNoS_omega_SNoR_min_exists
SNoS_omega_SNoR_min_exists
:
∀ x0 .
x0
∈
SNoS_
omega
⟶
or
(
SNoR
x0
=
0
)
(
∀ x1 : ο .
(
∀ x2 .
SNo_min_of
(
SNoR
x0
)
x2
⟶
x1
)
⟶
x1
)
(proof)