Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrFwu../b8da3..
PUWiD../a478c..
vout
PrFwu../e543d.. 24.97 bars
TMcF5../9bb8c.. ownership of 15c2f.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMYWv../e459b.. ownership of 52654.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMLkv../6ee3a.. ownership of fd785.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMMZk../11384.. ownership of 81364.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMGR4../670f6.. ownership of fd974.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMSM3../a2f88.. ownership of 42d92.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMQDT../bdbca.. ownership of e5c8e.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMSpr../fe52c.. ownership of c4c94.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMUKD../50047.. ownership of b05a4.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
TMR42../e1d59.. ownership of 2cd40.. as prop with payaddr PrGM6.. rights free controlledby PrGM6.. upto 0
PUakf../650dd.. doc published by PrGM6..
Definition FalseFalse := ∀ x0 : ο . x0
Definition notnot := λ x0 : ο . x0False
Definition 2f869.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 . ∀ x5 : ο . ((x1 = x2∀ x6 : ο . x6)(x1 = x3∀ x6 : ο . x6)(x2 = x3∀ x6 : ο . x6)(x1 = x4∀ x6 : ο . x6)(x2 = x4∀ x6 : ο . x6)(x3 = x4∀ x6 : ο . x6)not (x0 x1 x2)not (x0 x1 x3)not (x0 x2 x3)not (x0 x1 x4)not (x0 x2 x4)x0 x3 x4x5)x5
Definition 5a3b5.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)not (x0 x4 x5)x6)x6
Definition 00e19.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (5a3b5.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6not (x0 x2 x6)not (x0 x3 x6)not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 87c36.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 . ∀ x6 : ο . (2f869.. x0 x1 x2 x3 x4(x1 = x5∀ x7 : ο . x7)(x2 = x5∀ x7 : ο . x7)(x3 = x5∀ x7 : ο . x7)(x4 = x5∀ x7 : ο . x7)not (x0 x1 x5)x0 x2 x5not (x0 x3 x5)x0 x4 x5x6)x6
Definition f6f09.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 . ∀ x7 : ο . (87c36.. x0 x1 x2 x3 x4 x5(x1 = x6∀ x8 : ο . x8)(x2 = x6∀ x8 : ο . x8)(x3 = x6∀ x8 : ο . x8)(x4 = x6∀ x8 : ο . x8)(x5 = x6∀ x8 : ο . x8)x0 x1 x6x0 x2 x6x0 x3 x6not (x0 x4 x6)not (x0 x5 x6)x7)x7
Definition 88b7c.. := λ x0 : ι → ι → ο . λ x1 x2 x3 x4 x5 x6 x7 . ∀ x8 : ο . (f6f09.. x0 x1 x2 x3 x4 x5 x6(x1 = x7∀ x9 : ο . x9)(x2 = x7∀ x9 : ο . x9)(x3 = x7∀ x9 : ο . x9)(x4 = x7∀ x9 : ο . x9)(x5 = x7∀ x9 : ο . x9)(x6 = x7∀ x9 : ο . x9)x0 x1 x7x0 x2 x7x0 x3 x7not (x0 x4 x7)not (x0 x5 x7)not (x0 x6 x7)x8)x8
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Param atleastpatleastp : ιιο
Definition cdfa5.. := λ x0 x1 . λ x2 : ι → ι → ο . ∀ x3 . x3x1atleastp x0 x3not (∀ x4 . x4x3∀ x5 . x5x3(x4 = x5∀ x6 : ο . x6)x2 x4 x5)
Param u4 : ι
Definition 86706.. := cdfa5.. u4
Definition 35fb6.. := λ x0 . λ x1 : ι → ι → ο . 86706.. x0 (λ x2 x3 . not (x1 x2 x3))
Param SetAdjoinSetAdjoin : ιιι
Param UPairUPair : ιιι
Definition oror := λ x0 x1 : ο . ∀ x2 : ο . (x0x2)(x1x2)x2
Known xmxm : ∀ x0 : ο . or x0 (not x0)
Known dnegdneg : ∀ x0 : ο . not (not x0)x0
Param equipequip : ιιο
Known equip_atleastpequip_atleastp : ∀ x0 x1 . equip x0 x1atleastp x0 x1
Known 7204a.. : ∀ x0 x1 x2 x3 . (x0 = x1∀ x4 : ο . x4)(x0 = x2∀ x4 : ο . x4)(x1 = x2∀ x4 : ο . x4)(x0 = x3∀ x4 : ο . x4)(x1 = x3∀ x4 : ο . x4)(x2 = x3∀ x4 : ο . x4)equip u4 (SetAdjoin (SetAdjoin (UPair x0 x1) x2) x3)
Known 58c12.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 x3 x4 . x0 x1 x2x0 x1 x3x0 x1 x4x0 x2 x3x0 x2 x4x0 x3 x4(∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0 x5 x6x0 x6 x5)∀ x5 . x5SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4∀ x6 . x6SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4(x5 = x6∀ x7 : ο . x7)x0 x5 x6
Known c88f0.. : ∀ x0 x1 . x1x0∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0SetAdjoin (SetAdjoin (UPair x1 x2) x3) x4x0
Theorem b05a4.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x788b7c.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x11x0 x2 x12not (x0 x2 x10)not (x0 x2 x9)x0 x3 x10not (x0 x3 x9)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)(x0 x2 x14not (x0 x2 x13)False)(x0 x2 x10not (x0 x2 x9)False)False
...

Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Known FalseEFalseE : False∀ x0 : ο . x0
Known 1c461.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x088b7c.. x1 x2 x3 x4 x5 x6 x7 x888b7c.. x1 x2 x4 x3 x6 x5 x7 x8
Known andIandI : ∀ x0 x1 : ο . x0x1and x0 x1
Theorem e5c8e.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x788b7c.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x2 x14not (x0 x2 x13)False)(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known 06a77.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x088b7c.. x1 x2 x3 x4 x5 x6 x7 x888b7c.. x1 x2 x3 x4 x5 x6 x8 x7
Theorem fd974.. : ∀ x0 . ∀ x1 : ι → ι → ο . (∀ x2 . x2x0∀ x3 . x3x0x1 x2 x3x1 x3 x2)∀ x2 . x2x0∀ x3 . x3x0∀ x4 . x4x0∀ x5 . x5x0∀ x6 . x6x0∀ x7 . x7x0∀ x8 . x8x088b7c.. x1 x2 x3 x4 x5 x6 x7 x888b7c.. x1 x2 x4 x3 x6 x5 x8 x7
...

Theorem fd785.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x788b7c.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0(x0 x6 x8not (x0 x3 x8)False)(x0 x6 x8not (x0 x2 x8)False)(x0 x5 x8not (x0 x4 x8)False)(x0 x5 x8not (x0 x2 x8)False)(x0 x4 x8not (x0 x3 x8)False)False
...

Known 8f85a.. : ∀ x0 : ι → ι → ο . ∀ x1 : ι → ι → ι → ι → ι → ι → ι → ο . (∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2∀ x15 . x15x2(∀ x16 . x16x2∀ x17 . x17x2x0 x16 x17x0 x17 x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x8 = x9∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x8 = x10∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x8 = x11∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x8 = x12∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x8 = x13∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x8 = x14∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)(x8 = x15∀ x16 : ο . x16)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x14 x1586706.. x2 x035fb6.. x2 x0(x0 x7 x9not (x0 x4 x9)False)(x0 x7 x9not (x0 x3 x9)False)(x0 x6 x9not (x0 x5 x9)False)(x0 x6 x9not (x0 x4 x9)False)(x0 x6 x9not (x0 x3 x9)False)(x0 x5 x9not (x0 x4 x9)False)False)∀ x2 x3 . x3x2∀ x4 . x4x2∀ x5 . x5x2∀ x6 . x6x2∀ x7 . x7x2∀ x8 . x8x2∀ x9 . x9x2∀ x10 . x10x2∀ x11 . x11x2∀ x12 . x12x2∀ x13 . x13x2∀ x14 . x14x2∀ x15 . x15x2(∀ x16 . x16x2∀ x17 . x17x2x0 x16 x17x0 x17 x16)(x3 = x9∀ x16 : ο . x16)(x4 = x9∀ x16 : ο . x16)(x5 = x9∀ x16 : ο . x16)(x6 = x9∀ x16 : ο . x16)(x7 = x9∀ x16 : ο . x16)(x8 = x9∀ x16 : ο . x16)(x3 = x10∀ x16 : ο . x16)(x4 = x10∀ x16 : ο . x16)(x5 = x10∀ x16 : ο . x16)(x6 = x10∀ x16 : ο . x16)(x7 = x10∀ x16 : ο . x16)(x8 = x10∀ x16 : ο . x16)(x3 = x11∀ x16 : ο . x16)(x4 = x11∀ x16 : ο . x16)(x5 = x11∀ x16 : ο . x16)(x6 = x11∀ x16 : ο . x16)(x7 = x11∀ x16 : ο . x16)(x8 = x11∀ x16 : ο . x16)(x3 = x12∀ x16 : ο . x16)(x4 = x12∀ x16 : ο . x16)(x5 = x12∀ x16 : ο . x16)(x6 = x12∀ x16 : ο . x16)(x7 = x12∀ x16 : ο . x16)(x8 = x12∀ x16 : ο . x16)(x3 = x13∀ x16 : ο . x16)(x4 = x13∀ x16 : ο . x16)(x5 = x13∀ x16 : ο . x16)(x6 = x13∀ x16 : ο . x16)(x7 = x13∀ x16 : ο . x16)(x8 = x13∀ x16 : ο . x16)(x3 = x14∀ x16 : ο . x16)(x4 = x14∀ x16 : ο . x16)(x5 = x14∀ x16 : ο . x16)(x6 = x14∀ x16 : ο . x16)(x7 = x14∀ x16 : ο . x16)(x8 = x14∀ x16 : ο . x16)(x3 = x15∀ x16 : ο . x16)(x4 = x15∀ x16 : ο . x16)(x5 = x15∀ x16 : ο . x16)(x6 = x15∀ x16 : ο . x16)(x7 = x15∀ x16 : ο . x16)(x8 = x15∀ x16 : ο . x16)00e19.. x0 x3 x4 x5 x6 x7 x8x1 x9 x10 x11 x12 x13 x14 x1586706.. x2 x035fb6.. x2 x0False
Theorem 15c2f.. : ∀ x0 : ι → ι → ο . ∀ x1 x2 . x2x1∀ x3 . x3x1∀ x4 . x4x1∀ x5 . x5x1∀ x6 . x6x1∀ x7 . x7x1∀ x8 . x8x1∀ x9 . x9x1∀ x10 . x10x1∀ x11 . x11x1∀ x12 . x12x1∀ x13 . x13x1∀ x14 . x14x1(∀ x15 . x15x1∀ x16 . x16x1x0 x15 x16x0 x16 x15)(x2 = x8∀ x15 : ο . x15)(x3 = x8∀ x15 : ο . x15)(x4 = x8∀ x15 : ο . x15)(x5 = x8∀ x15 : ο . x15)(x6 = x8∀ x15 : ο . x15)(x7 = x8∀ x15 : ο . x15)(x2 = x9∀ x15 : ο . x15)(x3 = x9∀ x15 : ο . x15)(x4 = x9∀ x15 : ο . x15)(x5 = x9∀ x15 : ο . x15)(x6 = x9∀ x15 : ο . x15)(x7 = x9∀ x15 : ο . x15)(x2 = x10∀ x15 : ο . x15)(x3 = x10∀ x15 : ο . x15)(x4 = x10∀ x15 : ο . x15)(x5 = x10∀ x15 : ο . x15)(x6 = x10∀ x15 : ο . x15)(x7 = x10∀ x15 : ο . x15)(x2 = x11∀ x15 : ο . x15)(x3 = x11∀ x15 : ο . x15)(x4 = x11∀ x15 : ο . x15)(x5 = x11∀ x15 : ο . x15)(x6 = x11∀ x15 : ο . x15)(x7 = x11∀ x15 : ο . x15)(x2 = x12∀ x15 : ο . x15)(x3 = x12∀ x15 : ο . x15)(x4 = x12∀ x15 : ο . x15)(x5 = x12∀ x15 : ο . x15)(x6 = x12∀ x15 : ο . x15)(x7 = x12∀ x15 : ο . x15)(x2 = x13∀ x15 : ο . x15)(x3 = x13∀ x15 : ο . x15)(x4 = x13∀ x15 : ο . x15)(x5 = x13∀ x15 : ο . x15)(x6 = x13∀ x15 : ο . x15)(x7 = x13∀ x15 : ο . x15)(x2 = x14∀ x15 : ο . x15)(x3 = x14∀ x15 : ο . x15)(x4 = x14∀ x15 : ο . x15)(x5 = x14∀ x15 : ο . x15)(x6 = x14∀ x15 : ο . x15)(x7 = x14∀ x15 : ο . x15)00e19.. x0 x2 x3 x4 x5 x6 x788b7c.. (λ x15 x16 . not (x0 x15 x16)) x8 x9 x10 x11 x12 x13 x1486706.. x1 x035fb6.. x1 x0False
...