Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 :
ι →
ι → ο
.
(
∀ x1 x2 .
x0
x1
x2
⟶
x0
x2
x1
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u3
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
x0
x2
x3
)
)
⟶
(
∀ x1 .
x1
⊆
u18
⟶
atleastp
u6
x1
⟶
not
(
∀ x2 .
x2
∈
x1
⟶
∀ x3 .
x3
∈
x1
⟶
(
x2
=
x3
⟶
∀ x4 : ο .
x4
)
⟶
not
(
x0
x2
x3
)
)
)
⟶
∀ x1 .
x1
∈
u18
⟶
∀ x2 : ο .
(
∀ x3 .
x3
∈
DirGraphOutNeighbors
u18
x0
x1
⟶
∀ x4 .
x4
⊆
u18
⟶
∀ x5 .
x5
⊆
u18
⟶
∀ x6 .
x6
⊆
u18
⟶
∀ x7 .
x7
⊆
u18
⟶
x4
=
setminus
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x3
)
⟶
x6
=
setminus
(
DirGraphOutNeighbors
u18
x0
x3
)
(
Sing
x1
)
⟶
x5
=
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u1
}
⟶
x7
=
setminus
{x9 ∈
setminus
u18
(
binunion
(
DirGraphOutNeighbors
u18
x0
x1
)
(
Sing
x1
)
)
|
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x9
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
}
x6
⟶
(
∀ x8 .
x8
∈
u18
⟶
∀ x9 : ο .
(
x8
=
x1
⟶
x9
)
⟶
(
x8
=
x3
⟶
x9
)
⟶
(
x8
∈
x4
⟶
x9
)
⟶
(
x8
∈
x6
⟶
x9
)
⟶
(
x8
∈
x5
⟶
x9
)
⟶
(
x8
∈
x7
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
not
(
x0
x3
x8
)
)
⟶
equip
x4
u4
⟶
equip
x5
u4
⟶
equip
x6
u4
⟶
equip
x7
u4
⟶
(
∀ x8 .
x8
∈
x6
⟶
nIn
x8
x7
)
⟶
(
∀ x8 .
x8
∈
x5
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x6
)
(
x0
x8
x10
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
not
(
x0
x1
x8
)
)
⟶
(
∀ x8 .
x8
∈
x6
⟶
equip
(
binintersect
(
DirGraphOutNeighbors
u18
x0
x8
)
(
DirGraphOutNeighbors
u18
x0
x1
)
)
u2
)
⟶
f1360..
x0
u3
x5
⟶
x2
)
⟶
x2
as obj
-
as prop
52c6f..
theory
HotG
stx
493fb..
address
TMEmT..