Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrGNF..
/
05a36..
PUX8C..
/
3e284..
vout
PrGNF..
/
e8265..
24.98 bars
TMKsg..
/
c99fe..
ownership of
3db9b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKrm..
/
dcbd8..
ownership of
089e8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMa8j..
/
a56c4..
ownership of
7d0b3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFTm..
/
3e156..
ownership of
10493..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVju..
/
2e73c..
ownership of
1c1fb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPdn..
/
4cd01..
ownership of
8051f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUEi..
/
9c9f7..
ownership of
59c4d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTdH..
/
4a8a4..
ownership of
eb2ef..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZEo..
/
2e656..
ownership of
5a473..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUWi..
/
3be6c..
ownership of
4b0f6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZYT..
/
33957..
ownership of
c905c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZKk..
/
d0627..
ownership of
e2b66..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKDo..
/
13e6b..
ownership of
02f07..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJw7..
/
7ef91..
ownership of
9c2e2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVvM..
/
98c78..
ownership of
0f819..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU18..
/
bcf8c..
ownership of
99828..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQA7..
/
bd497..
ownership of
67814..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWE1..
/
aedd2..
ownership of
3ab78..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLFT..
/
d22c9..
ownership of
846b3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYVd..
/
4205d..
ownership of
31c41..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKav..
/
0250a..
ownership of
9b6e5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcJ6..
/
fb174..
ownership of
04e91..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK4H..
/
7607a..
ownership of
528c2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWPz..
/
ee676..
ownership of
02db6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPHV..
/
c5d74..
ownership of
dc308..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZbf..
/
401c6..
ownership of
08751..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNVF..
/
8aa38..
ownership of
dbbce..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMR6k..
/
80984..
ownership of
b2ef2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdVQ..
/
d36a8..
ownership of
071f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQk6..
/
540b7..
ownership of
a13b3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUKy..
/
c6191..
ownership of
7075a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQ2H..
/
93bac..
ownership of
9eaa9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLzv..
/
0022b..
ownership of
f77a7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRZg..
/
f184d..
ownership of
5091b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMwz..
/
120a1..
ownership of
acfd5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLyn..
/
25b19..
ownership of
f50dd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKHn..
/
e8544..
ownership of
be7e4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRgs..
/
f86a5..
ownership of
d2a9d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbff..
/
211ca..
ownership of
63a8c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWjn..
/
f8806..
ownership of
8b11b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRka..
/
97b67..
ownership of
b1dc2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZBQ..
/
de068..
ownership of
df397..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRvc..
/
eada5..
ownership of
819e3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMEnh..
/
99c7f..
ownership of
8f422..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVJL..
/
33521..
ownership of
70513..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML9k..
/
65592..
ownership of
b2fda..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSN8..
/
af532..
ownership of
f74bd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdye..
/
2b7f1..
ownership of
bed96..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQJo..
/
bef3e..
ownership of
c1ea6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXis..
/
dac7a..
ownership of
313a6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJzt..
/
9bdfc..
ownership of
58f90..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUrn..
/
c6ad3..
ownership of
1c902..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQjC..
/
f007f..
ownership of
298cb..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdDv..
/
bc8ff..
ownership of
85802..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFri..
/
5a503..
ownership of
c4d00..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMcmh..
/
1f033..
ownership of
0aba2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJiK..
/
4ba4d..
ownership of
a66f2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdzG..
/
58af0..
ownership of
2cd10..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHRh..
/
52bc3..
ownership of
95606..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXMG..
/
53b47..
ownership of
5e1f7..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYpW..
/
24933..
ownership of
5ca46..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHUA..
/
6cdbe..
ownership of
85397..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYpa..
/
f2bd8..
ownership of
5fca6..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGoc..
/
8bc57..
ownership of
e7682..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUPq..
/
b7f38..
ownership of
9e061..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLDf..
/
b9c93..
ownership of
3da02..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQdK..
/
62de7..
ownership of
a0755..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbqr..
/
9f6c9..
ownership of
ae678..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMafT..
/
956ea..
ownership of
7c086..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ4A..
/
7a978..
ownership of
8f7e1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHau..
/
d927d..
ownership of
1c3a3..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVBk..
/
ee4e0..
ownership of
39341..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbVx..
/
e78d2..
ownership of
4f310..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJ4V..
/
881f7..
ownership of
8ec7e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY2E..
/
c8ce6..
ownership of
e13bf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXcT..
/
88c15..
ownership of
bc999..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMK5c..
/
96a45..
ownership of
e9780..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQmT..
/
25784..
ownership of
7ad92..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPL4..
/
46172..
ownership of
82387..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRwk..
/
2f0ec..
ownership of
ea50b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMn1..
/
44658..
ownership of
e6954..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRnW..
/
02782..
ownership of
d98ac..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPKA..
/
1063f..
ownership of
dc4c2..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLBH..
/
7426e..
ownership of
7316e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWXc..
/
b6e0a..
ownership of
3ce02..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPJD..
/
0c3eb..
ownership of
00960..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYFr..
/
8c446..
ownership of
bf20a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPGw..
/
fa08b..
ownership of
514c1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG6u..
/
d121e..
ownership of
c359b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYKW..
/
6edd3..
ownership of
ff141..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMahA..
/
83706..
ownership of
24e08..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGtf..
/
1b63b..
ownership of
c2dfa..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TML2p..
/
a24f6..
ownership of
1e09f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJCA..
/
9e772..
ownership of
9f179..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKT6..
/
09aaf..
ownership of
1b0ab..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXgX..
/
c41a1..
ownership of
df433..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMMCj..
/
c05e3..
ownership of
97f65..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHN8..
/
0a10e..
ownership of
20303..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLG7..
/
1e886..
ownership of
fd38c..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT6n..
/
a6fa2..
ownership of
e7fb1..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbUe..
/
18f5d..
ownership of
60346..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXqx..
/
f0d17..
ownership of
c7f8d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRTE..
/
6dca0..
ownership of
aa832..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGYh..
/
95060..
ownership of
76b5a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN5e..
/
bdc50..
ownership of
d8071..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdWp..
/
b975e..
ownership of
926f5..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGzy..
/
87f93..
ownership of
651a8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMRoo..
/
0a607..
ownership of
17c3f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNng..
/
a405c..
ownership of
a36e4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWWn..
/
6afda..
ownership of
a877a..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUa7..
/
c1d43..
ownership of
3735e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNLP..
/
d454a..
ownership of
8c18b..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbJv..
/
7bbb1..
ownership of
6dc05..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWrD..
/
eaf31..
ownership of
1caf0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYVU..
/
10e90..
ownership of
8bc32..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPm1..
/
f9e5e..
ownership of
d32b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWu3..
/
8120e..
ownership of
924a0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKEV..
/
0ea38..
ownership of
6e7ef..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPqo..
/
14f89..
ownership of
0facc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdmq..
/
dcb9e..
ownership of
9eb03..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMX9F..
/
d424b..
ownership of
3cd86..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMUsH..
/
4055c..
ownership of
3ae4f..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVqJ..
/
0c1cf..
ownership of
87375..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXzg..
/
b1e77..
ownership of
403b9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdZv..
/
71148..
ownership of
627d4..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMb5P..
/
4dc13..
ownership of
d1c17..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNF4..
/
db5fe..
ownership of
cc9d8..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXXR..
/
65669..
ownership of
b3e4d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMN86..
/
c99c5..
ownership of
41de0..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFy1..
/
c6252..
ownership of
4fc33..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMT7r..
/
7acde..
ownership of
b554d..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLMj..
/
5470b..
ownership of
ee4e9..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMY4L..
/
4adc2..
ownership of
84fcd..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMGPX..
/
187d8..
ownership of
76e35..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMU6P..
/
32315..
ownership of
9e1cf..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMTPQ..
/
e2d50..
ownership of
63955..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVPr..
/
7823a..
ownership of
4b222..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbng..
/
38e9a..
ownership of
a1b93..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKhy..
/
0a988..
ownership of
8208e..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPZn..
/
7e020..
ownership of
f98fc..
as prop with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNkw..
/
a48f8..
ownership of
5592c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMPc3..
/
76622..
ownership of
98c63..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMdRi..
/
50132..
ownership of
2def8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMF1Y..
/
4a9f0..
ownership of
bab04..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMKVS..
/
36959..
ownership of
0670d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXDY..
/
3ae91..
ownership of
d1dfc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbe5..
/
b77c8..
ownership of
2e40c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMNJE..
/
6163c..
ownership of
5be97..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYkm..
/
db26d..
ownership of
08fa6..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVsU..
/
d6c78..
ownership of
68ca3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZbh..
/
91896..
ownership of
16885..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMYe1..
/
3d52c..
ownership of
5221c..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG7G..
/
b88dd..
ownership of
24ba9..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSS3..
/
6c700..
ownership of
f1581..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZhr..
/
d8bde..
ownership of
f4fb4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXVb..
/
cf2d3..
ownership of
7ea11..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZkH..
/
db8f4..
ownership of
85724..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFkk..
/
bb849..
ownership of
071e7..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZ3G..
/
5a4e3..
ownership of
3259d..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXEq..
/
5cd19..
ownership of
a8cdf..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMJna..
/
1e302..
ownership of
d4af0..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMSLi..
/
e03b8..
ownership of
c38bc..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMXqg..
/
a1da3..
ownership of
608f4..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMHaK..
/
4411a..
ownership of
fee0b..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMQTo..
/
465e0..
ownership of
27e22..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMFut..
/
321bd..
ownership of
f4fb5..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMZgB..
/
479ac..
ownership of
cf688..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMbXp..
/
23ca4..
ownership of
0017a..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMWYH..
/
ce3b8..
ownership of
687c3..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMVL4..
/
ceb1a..
ownership of
291b2..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMG3X..
/
326a1..
ownership of
7ac32..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
TMLuW..
/
b676f..
ownership of
a5af8..
as obj with payaddr
PrGxv..
rights free controlledby
PrGxv..
upto 0
PUR3i..
/
6666c..
doc published by
PrGxv..
Param
0fc90..
:
ι
→
(
ι
→
ι
) →
ι
Param
4ae4a..
:
ι
→
ι
Param
4a7ef..
:
ι
Param
If_i
:
ο
→
ι
→
ι
→
ι
Param
e0e40..
:
ι
→
(
(
ι
→
ο
) →
ο
) →
ι
Param
d2155..
:
ι
→
(
ι
→
ι
→
ο
) →
ι
Param
1216a..
:
ι
→
(
ι
→
ο
) →
ι
Definition
7ac32..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Param
f482f..
:
ι
→
ι
→
ι
Known
7d2e2..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
4a7ef..
=
x0
Theorem
8208e..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
7ac32..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
4b222..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
x0
=
f482f..
(
7ac32..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Param
decode_c
:
ι
→
(
ι
→
ο
) →
ο
Known
504a8..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
4a7ef..
)
=
x1
Known
81500..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ο
.
(
∀ x3 .
x2
x3
⟶
prim1
x3
x0
)
⟶
decode_c
(
e0e40..
x0
x1
)
x2
=
x1
x2
Theorem
9e1cf..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
7ac32..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
84fcd..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
7ac32..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Known
fb20c..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
=
x2
Known
f22ec..
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 .
prim1
x2
x0
⟶
f482f..
(
0fc90..
x0
x1
)
x2
=
x1
x2
Theorem
b554d..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
7ac32..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
41de0..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
7ac32..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Param
2b2e3..
:
ι
→
ι
→
ι
→
ο
Known
431f3..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
=
x3
Known
67416..
:
∀ x0 .
∀ x1 :
ι →
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
∀ x3 .
prim1
x3
x0
⟶
2b2e3..
(
d2155..
x0
x1
)
x2
x3
=
x1
x2
x3
Theorem
cc9d8..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
7ac32..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
627d4..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
7ac32..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Param
decode_p
:
ι
→
ι
→
ο
Known
ffdcd..
:
∀ x0 x1 x2 x3 x4 .
f482f..
(
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x6 .
If_i
(
x6
=
4a7ef..
)
x0
(
If_i
(
x6
=
4ae4a..
4a7ef..
)
x1
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
x2
(
If_i
(
x6
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x3
x4
)
)
)
)
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
=
x4
Known
931fe..
:
∀ x0 .
∀ x1 :
ι → ο
.
∀ x2 .
prim1
x2
x0
⟶
decode_p
(
1216a..
x0
x1
)
x2
=
x1
x2
Theorem
87375..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
x0
=
7ac32..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
3cd86..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
7ac32..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Definition
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Known
and5I
:
∀ x0 x1 x2 x3 x4 : ο .
x0
⟶
x1
⟶
x2
⟶
x3
⟶
x4
⟶
and
(
and
(
and
(
and
x0
x1
)
x2
)
x3
)
x4
Theorem
0facc..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 :
ι → ο
.
7ac32..
x0
x2
x4
x6
x8
=
7ac32..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Param
iff
:
ο
→
ο
→
ο
Known
ee7ef..
:
∀ x0 .
∀ x1 x2 :
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
1216a..
x0
x1
=
1216a..
x0
x2
Known
62ef7..
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ο
.
(
∀ x3 .
prim1
x3
x0
⟶
∀ x4 .
prim1
x4
x0
⟶
iff
(
x1
x3
x4
)
(
x2
x3
x4
)
)
⟶
d2155..
x0
x1
=
d2155..
x0
x2
Known
4402a..
:
∀ x0 .
∀ x1 x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
x1
x3
=
x2
x3
)
⟶
0fc90..
x0
x1
=
0fc90..
x0
x2
Known
fe043..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
(
∀ x3 :
ι → ο
.
(
∀ x4 .
x3
x4
⟶
prim1
x4
x0
)
⟶
iff
(
x1
x3
)
(
x2
x3
)
)
⟶
e0e40..
x0
x1
=
e0e40..
x0
x2
Theorem
924a0..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
∀ x7 x8 :
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x3
x9
=
x4
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
∀ x10 .
prim1
x10
x0
⟶
iff
(
x5
x9
x10
)
(
x6
x9
x10
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
7ac32..
x0
x1
x3
x5
x7
=
7ac32..
x0
x2
x4
x6
x8
(proof)
Definition
687c3..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 :
ι → ο
.
x1
(
7ac32..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
8bc32..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
687c3..
(
7ac32..
x0
x1
x2
x3
x4
)
(proof)
Theorem
6dc05..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 :
ι → ο
.
687c3..
(
7ac32..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Known
iff_refl
:
∀ x0 : ο .
iff
x0
x0
Theorem
3735e..
:
∀ x0 .
687c3..
x0
⟶
x0
=
7ac32..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
cf688..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
a36e4..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
cf688..
(
7ac32..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
27e22..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
651a8..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
27e22..
(
7ac32..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
608f4..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 :
ι →
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
d2155..
x0
x3
)
x4
)
)
)
)
Theorem
d8071..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
608f4..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
aa832..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x0
=
f482f..
(
608f4..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
60346..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
608f4..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
fd38c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
608f4..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
97f65..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
608f4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
1b0ab..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
608f4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
1e09f..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
608f4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
∀ x7 .
prim1
x7
x1
⟶
x4
x6
x7
=
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
x7
(proof)
Theorem
24e08..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
∀ x6 .
prim1
x6
x0
⟶
x3
x5
x6
=
2b2e3..
(
f482f..
(
608f4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
x6
(proof)
Theorem
c359b..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
x0
=
608f4..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
bf20a..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
x4
=
f482f..
(
608f4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
3ce02..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 :
ι →
ι → ο
.
∀ x8 x9 .
608f4..
x0
x2
x4
x6
x8
=
608f4..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
∀ x11 .
prim1
x11
x0
⟶
x6
x10
x11
=
x7
x10
x11
)
)
(
x8
=
x9
)
(proof)
Theorem
dc4c2..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 :
ι →
ι → ο
.
∀ x7 .
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
iff
(
x1
x8
)
(
x2
x8
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x8
=
x4
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x8
x9
)
(
x6
x8
x9
)
)
⟶
608f4..
x0
x1
x3
x5
x7
=
608f4..
x0
x2
x4
x6
x7
(proof)
Definition
d4af0..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 :
ι →
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
608f4..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
e6954..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 :
ι →
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
d4af0..
(
608f4..
x0
x1
x2
x3
x4
)
(proof)
Theorem
82387..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
d4af0..
(
608f4..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Theorem
e9780..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι →
ι → ο
.
∀ x4 .
d4af0..
(
608f4..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
e13bf..
:
∀ x0 .
d4af0..
x0
⟶
x0
=
608f4..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
3259d..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
4f310..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
3259d..
(
608f4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
85724..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
2b2e3..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
1c3a3..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι →
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι →
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι →
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
∀ x10 .
prim1
x10
x1
⟶
iff
(
x4
x9
x10
)
(
x8
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
85724..
(
608f4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
f4fb4..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 x4 :
ι → ο
.
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
(
1216a..
x0
x4
)
)
)
)
)
Theorem
7c086..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
f4fb4..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
a0755..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
x0
=
f482f..
(
f4fb4..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
9e061..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
f4fb4..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
5fca6..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
f4fb4..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
5ca46..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
f4fb4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
95606..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
f4fb4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
a66f2..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
f4fb4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
c4d00..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
f4fb4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
298cb..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
x0
=
f4fb4..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x5
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x6
(proof)
Theorem
58f90..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
∀ x5 .
prim1
x5
x0
⟶
x4
x5
=
decode_p
(
f482f..
(
f4fb4..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
x5
(proof)
Theorem
c1ea6..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 x8 x9 :
ι → ο
.
f4fb4..
x0
x2
x4
x6
x8
=
f4fb4..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x8
x10
=
x9
x10
)
(proof)
Theorem
f74bd..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 x7 x8 :
ι → ο
.
(
∀ x9 :
ι → ο
.
(
∀ x10 .
x9
x10
⟶
prim1
x10
x0
)
⟶
iff
(
x1
x9
)
(
x2
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
x3
x9
=
x4
x9
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x5
x9
)
(
x6
x9
)
)
⟶
(
∀ x9 .
prim1
x9
x0
⟶
iff
(
x7
x9
)
(
x8
x9
)
)
⟶
f4fb4..
x0
x1
x3
x5
x7
=
f4fb4..
x0
x2
x4
x6
x8
(proof)
Definition
24ba9..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 x6 :
ι → ο
.
x1
(
f4fb4..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
70513..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 x4 :
ι → ο
.
24ba9..
(
f4fb4..
x0
x1
x2
x3
x4
)
(proof)
Theorem
819e3..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 x4 :
ι → ο
.
24ba9..
(
f4fb4..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Theorem
b1dc2..
:
∀ x0 .
24ba9..
x0
⟶
x0
=
f4fb4..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
(proof)
Definition
16885..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
63a8c..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
16885..
(
f4fb4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
08fa6..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
)
Theorem
be7e4..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
(
ι → ο
)
→ ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 x5 :
ι → ο
.
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
∀ x9 :
ι → ο
.
(
∀ x10 .
prim1
x10
x1
⟶
iff
(
x5
x10
)
(
x9
x10
)
)
⟶
x0
x1
x6
x7
x8
x9
=
x0
x1
x2
x3
x4
x5
)
⟶
08fa6..
(
f4fb4..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
2e40c..
:=
λ x0 .
λ x1 :
(
ι → ο
)
→ ο
.
λ x2 :
ι → ι
.
λ x3 :
ι → ο
.
λ x4 .
0fc90..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
λ x5 .
If_i
(
x5
=
4a7ef..
)
x0
(
If_i
(
x5
=
4ae4a..
4a7ef..
)
(
e0e40..
x0
x1
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
4a7ef..
)
)
(
0fc90..
x0
x2
)
(
If_i
(
x5
=
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
(
1216a..
x0
x3
)
x4
)
)
)
)
Theorem
acfd5..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
2e40c..
x1
x2
x3
x4
x5
⟶
x1
=
f482f..
x0
4a7ef..
(proof)
Theorem
f77a7..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x0
=
f482f..
(
2e40c..
x0
x1
x2
x3
x4
)
4a7ef..
(proof)
Theorem
7075a..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
2e40c..
x1
x2
x3
x4
x5
⟶
∀ x6 :
ι → ο
.
(
∀ x7 .
x6
x7
⟶
prim1
x7
x1
)
⟶
x2
x6
=
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
x6
(proof)
Theorem
071f5..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
∀ x5 :
ι → ο
.
(
∀ x6 .
x5
x6
⟶
prim1
x6
x0
)
⟶
x1
x5
=
decode_c
(
f482f..
(
2e40c..
x0
x1
x2
x3
x4
)
(
4ae4a..
4a7ef..
)
)
x5
(proof)
Theorem
dbbce..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
2e40c..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x3
x6
=
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x6
(proof)
Theorem
dc308..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x2
x5
=
f482f..
(
f482f..
(
2e40c..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
x5
(proof)
Theorem
528c2..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
2e40c..
x1
x2
x3
x4
x5
⟶
∀ x6 .
prim1
x6
x1
⟶
x4
x6
=
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x6
(proof)
Theorem
9b6e5..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 x5 .
prim1
x5
x0
⟶
x3
x5
=
decode_p
(
f482f..
(
2e40c..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
x5
(proof)
Theorem
846b3..
:
∀ x0 x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
x0
=
2e40c..
x1
x2
x3
x4
x5
⟶
x5
=
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
67814..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
x4
=
f482f..
(
2e40c..
x0
x1
x2
x3
x4
)
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(proof)
Theorem
0f819..
:
∀ x0 x1 .
∀ x2 x3 :
(
ι → ο
)
→ ο
.
∀ x4 x5 :
ι → ι
.
∀ x6 x7 :
ι → ο
.
∀ x8 x9 .
2e40c..
x0
x2
x4
x6
x8
=
2e40c..
x1
x3
x5
x7
x9
⟶
and
(
and
(
and
(
and
(
x0
=
x1
)
(
∀ x10 :
ι → ο
.
(
∀ x11 .
x10
x11
⟶
prim1
x11
x0
)
⟶
x2
x10
=
x3
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x4
x10
=
x5
x10
)
)
(
∀ x10 .
prim1
x10
x0
⟶
x6
x10
=
x7
x10
)
)
(
x8
=
x9
)
(proof)
Theorem
02f07..
:
∀ x0 .
∀ x1 x2 :
(
ι → ο
)
→ ο
.
∀ x3 x4 :
ι → ι
.
∀ x5 x6 :
ι → ο
.
∀ x7 .
(
∀ x8 :
ι → ο
.
(
∀ x9 .
x8
x9
⟶
prim1
x9
x0
)
⟶
iff
(
x1
x8
)
(
x2
x8
)
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
x3
x8
=
x4
x8
)
⟶
(
∀ x8 .
prim1
x8
x0
⟶
iff
(
x5
x8
)
(
x6
x8
)
)
⟶
2e40c..
x0
x1
x3
x5
x7
=
2e40c..
x0
x2
x4
x6
x7
(proof)
Definition
0670d..
:=
λ x0 .
∀ x1 :
ι → ο
.
(
∀ x2 .
∀ x3 :
(
ι → ο
)
→ ο
.
∀ x4 :
ι → ι
.
(
∀ x5 .
prim1
x5
x2
⟶
prim1
(
x4
x5
)
x2
)
⟶
∀ x5 :
ι → ο
.
∀ x6 .
prim1
x6
x2
⟶
x1
(
2e40c..
x2
x3
x4
x5
x6
)
)
⟶
x1
x0
Theorem
c905c..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
(
∀ x3 .
prim1
x3
x0
⟶
prim1
(
x2
x3
)
x0
)
⟶
∀ x3 :
ι → ο
.
∀ x4 .
prim1
x4
x0
⟶
0670d..
(
2e40c..
x0
x1
x2
x3
x4
)
(proof)
Theorem
5a473..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
0670d..
(
2e40c..
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
prim1
x5
x0
⟶
prim1
(
x2
x5
)
x0
(proof)
Theorem
59c4d..
:
∀ x0 .
∀ x1 :
(
ι → ο
)
→ ο
.
∀ x2 :
ι → ι
.
∀ x3 :
ι → ο
.
∀ x4 .
0670d..
(
2e40c..
x0
x1
x2
x3
x4
)
⟶
prim1
x4
x0
(proof)
Theorem
1c1fb..
:
∀ x0 .
0670d..
x0
⟶
x0
=
2e40c..
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(proof)
Definition
2def8..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
7d0b3..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
ι → ι
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
2def8..
(
2e40c..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)
Definition
5592c..
:=
λ x0 .
λ x1 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
x1
(
f482f..
x0
4a7ef..
)
(
decode_c
(
f482f..
x0
(
4ae4a..
4a7ef..
)
)
)
(
f482f..
(
f482f..
x0
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
(
decode_p
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
(
f482f..
x0
(
4ae4a..
(
4ae4a..
(
4ae4a..
(
4ae4a..
4a7ef..
)
)
)
)
)
Theorem
3db9b..
:
∀ x0 :
ι →
(
(
ι → ο
)
→ ο
)
→
(
ι → ι
)
→
(
ι → ο
)
→
ι → ο
.
∀ x1 .
∀ x2 :
(
ι → ο
)
→ ο
.
∀ x3 :
ι → ι
.
∀ x4 :
ι → ο
.
∀ x5 .
(
∀ x6 :
(
ι → ο
)
→ ο
.
(
∀ x7 :
ι → ο
.
(
∀ x8 .
x7
x8
⟶
prim1
x8
x1
)
⟶
iff
(
x2
x7
)
(
x6
x7
)
)
⟶
∀ x7 :
ι → ι
.
(
∀ x8 .
prim1
x8
x1
⟶
x3
x8
=
x7
x8
)
⟶
∀ x8 :
ι → ο
.
(
∀ x9 .
prim1
x9
x1
⟶
iff
(
x4
x9
)
(
x8
x9
)
)
⟶
x0
x1
x6
x7
x8
x5
=
x0
x1
x2
x3
x4
x5
)
⟶
5592c..
(
2e40c..
x1
x2
x3
x4
x5
)
x0
=
x0
x1
x2
x3
x4
x5
(proof)