Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : ((ι → ((ι → ι)ι → ι) → ι) → ι)(ι → ι)(ι → ι)ι → (ι → ι) → ι . ∀ x1 : (ι → (ι → ι → ι) → ι)(ι → ι) → ι . ∀ x2 : ((((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι) → ι)ι → (((ι → ι)ι → ι) → ι) → ι . ∀ x3 : (((ι → ι) → ι)(((ι → ι) → ι)ι → ι → ι)(ι → ι) → ι)((((ι → ι)ι → ι)ι → ι → ι)ι → ι) → ι . (∀ x4 : ι → ι . ∀ x5 . ∀ x6 : (((ι → ι)ι → ι)(ι → ι)ι → ι)(ι → ι → ι)ι → ι . ∀ x7 : (ι → ι) → ι . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι)ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . x10) = x4 0)(∀ x4 . ∀ x5 : (ι → ι) → ι . ∀ x6 : ι → ι . ∀ x7 . x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι)ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . x0 (λ x14 : ι → ((ι → ι)ι → ι) → ι . x0 (λ x15 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x15 . setsum 0 0) (λ x15 . 0) (x0 (λ x15 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x15 . 0) (λ x15 . 0) 0 (λ x15 . 0)) (λ x15 . x3 (λ x16 : (ι → ι) → ι . λ x17 : ((ι → ι) → ι)ι → ι → ι . λ x18 : ι → ι . 0) (λ x16 : ((ι → ι)ι → ι)ι → ι → ι . λ x17 . 0))) (λ x14 . x13 0) (λ x14 . x3 (λ x15 : (ι → ι) → ι . λ x16 : ((ι → ι) → ι)ι → ι → ι . λ x17 : ι → ι . 0) (λ x15 : ((ι → ι)ι → ι)ι → ι → ι . λ x16 . 0)) (x2 (λ x14 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) (x2 (λ x14 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x14 : (ι → ι)ι → ι . 0)) (λ x14 : (ι → ι)ι → ι . Inj0 0)) (λ x14 . 0)) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . 0)) = setsum x4 0)(∀ x4 : ι → ((ι → ι) → ι)(ι → ι) → ι . ∀ x5 : ι → ι → ι . ∀ x6 x7 . x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . Inj0 (Inj0 0)) 0 (λ x9 : (ι → ι)ι → ι . setsum (x1 (λ x10 . λ x11 : ι → ι → ι . Inj0 x10) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . x9 (λ x12 . 0) 0))) (x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . 0) (setsum (setsum 0 0)) (λ x10 . x9 (λ x11 . x9 (λ x12 . 0) 0) (x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . 0) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . 0))) (setsum (setsum 0 0) (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0))) (λ x10 . x2 (λ x11 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x11 : (ι → ι)ι → ι . x3 (λ x12 : (ι → ι) → ι . λ x13 : ((ι → ι) → ι)ι → ι → ι . λ x14 : ι → ι . 0) (λ x12 : ((ι → ι)ι → ι)ι → ι → ι . λ x13 . 0))))) = x6)(∀ x4 : ι → ((ι → ι)ι → ι) → ι . ∀ x5 . ∀ x6 : ι → ((ι → ι) → ι) → ι . ∀ x7 : (ι → ι) → ι . x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . setsum (x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι)ι → ι) → ι . setsum 0 0) (λ x11 . x7 (λ x12 . 0)) (λ x11 . 0) 0 (λ x11 . 0)) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . x10) (λ x11 . 0)) (λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . setsum 0 0) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . 0)) 0 (λ x10 . setsum 0 (Inj1 0))) (setsum (setsum 0 (x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0))) (x6 0 (λ x10 : ι → ι . x9 (λ x11 : ι → ι → ι . λ x12 x13 . 0) (λ x11 x12 . 0) (λ x11 . 0))))) (setsum (setsum x5 (setsum 0 (x3 (λ x9 : (ι → ι) → ι . λ x10 : ((ι → ι) → ι)ι → ι → ι . λ x11 : ι → ι . 0) (λ x9 : ((ι → ι)ι → ι)ι → ι → ι . λ x10 . 0)))) (x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . Inj0 x5) (setsum x5 (Inj0 0)) (λ x9 : (ι → ι)ι → ι . x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . Inj1 0)))) (λ x9 : (ι → ι)ι → ι . x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . x10 (x13 0) (λ x14 : ι → ι . λ x15 . x0 (λ x16 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x16 . 0) (λ x16 . 0) 0 (λ x16 . 0))) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . x10 (Inj1 0) (λ x13 : ι → ι . λ x14 . 0))) (λ x10 . 0) (λ x10 . 0) (x2 (λ x10 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . x6 0 (λ x11 : ι → ι . x2 (λ x12 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x12 : (ι → ι)ι → ι . 0))) (Inj0 0) (λ x10 : (ι → ι)ι → ι . x6 (x6 0 (λ x11 : ι → ι . 0)) (λ x11 : ι → ι . Inj0 0))) (λ x10 . x6 (x1 (λ x11 . λ x12 : ι → ι → ι . x2 (λ x13 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x13 : (ι → ι)ι → ι . 0)) (λ x11 . x10)) (λ x11 : ι → ι . 0))) = Inj0 (setsum 0 (x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . x2 (λ x10 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) (setsum 0 0) (λ x10 : (ι → ι)ι → ι . x10 (λ x11 . 0) 0)) (setsum (x4 0 (λ x9 : ι → ι . λ x10 . 0)) (Inj0 0)) (λ x9 : (ι → ι)ι → ι . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . Inj0 0)))))(∀ x4 : (ι → ι)(ι → ι → ι)(ι → ι) → ι . ∀ x5 : (((ι → ι)ι → ι) → ι) → ι . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι → ι) → ι) → ι . x1 (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 . 0) = x7 (λ x9 : ι → ι → ι . Inj0 (x6 0)))(∀ x4 . ∀ x5 : ι → ι → ι . ∀ x6 : (ι → ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . ∀ x7 : (ι → (ι → ι)ι → ι) → ι . x1 (λ x9 . λ x10 : ι → ι → ι . x7 (λ x11 . λ x12 : ι → ι . λ x13 . x11)) (λ x9 . Inj0 (setsum x9 (Inj0 (Inj1 0)))) = Inj0 0)(∀ x4 : ι → ((ι → ι)ι → ι)ι → ι → ι . ∀ x5 x6 . ∀ x7 : ι → ι . x0 (λ x9 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x9 . Inj1 (x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0))) (λ x9 . x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x11 . 0) (λ x11 . Inj0 (x0 (λ x12 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0))) 0 (λ x11 . setsum 0 (x0 (λ x12 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x12 . 0) (λ x12 . 0) 0 (λ x12 . 0)))) (λ x10 . Inj0 0) (λ x10 . Inj1 0) (Inj1 (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0))) (λ x10 . x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . 0) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . x0 (λ x13 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x13 . Inj1 0) (λ x13 . 0) x9 (λ x13 . x1 (λ x14 . λ x15 : ι → ι → ι . 0) (λ x14 . 0))))) 0 (λ x9 . x2 (λ x10 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . x7 0) (x1 (λ x10 . λ x11 : ι → ι → ι . x0 (λ x12 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x12 . x1 (λ x13 . λ x14 : ι → ι → ι . 0) (λ x13 . 0)) (λ x12 . 0) (setsum 0 0) (λ x12 . Inj1 0)) (λ x10 . 0)) (λ x10 : (ι → ι)ι → ι . x10 (λ x11 . setsum 0 0) (x2 (λ x11 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . x7 0) (Inj0 0) (λ x11 : (ι → ι)ι → ι . 0)))) = x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . Inj1 (x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . x10 0 (λ x11 : ι → ι . λ x12 . Inj1 0)) (λ x10 . Inj0 (x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0))) (λ x10 . 0) (x2 (λ x10 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) (x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0)) (λ x10 : (ι → ι)ι → ι . 0)) (λ x10 . 0))) (setsum (Inj0 (x0 (λ x9 : ι → ((ι → ι)ι → ι) → ι . x1 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 . 0)) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0)) (λ x9 . x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x10 . 0) (λ x10 . 0) 0 (λ x10 . 0)) (Inj1 0) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . 0) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . 0)))) 0) (λ x9 : (ι → ι)ι → ι . x6))(∀ x4 : (((ι → ι)ι → ι)(ι → ι)ι → ι)ι → ι . ∀ x5 : ((ι → ι → ι) → ι)ι → ι → ι → ι . ∀ x6 : (ι → ι → ι) → ι . ∀ x7 . x0 (λ x9 : ι → ((ι → ι)ι → ι) → ι . x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . x0 (λ x11 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x11 . 0) (λ x11 . x11) (x3 (λ x11 : (ι → ι) → ι . λ x12 : ((ι → ι) → ι)ι → ι → ι . λ x13 : ι → ι . x2 (λ x14 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x14 : (ι → ι)ι → ι . 0)) (λ x11 : ((ι → ι)ι → ι)ι → ι → ι . λ x12 . x10 0 (λ x13 : ι → ι . λ x14 . 0))) (λ x11 . x1 (λ x12 . λ x13 : ι → ι → ι . x10 0 (λ x14 : ι → ι . λ x15 . 0)) (λ x12 . x11))) (λ x10 . x0 (λ x11 : ι → ((ι → ι)ι → ι) → ι . x2 (λ x12 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . setsum 0 0) (x2 (λ x12 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x12 : (ι → ι)ι → ι . 0)) (λ x12 : (ι → ι)ι → ι . setsum 0 0)) (λ x11 . 0) (λ x11 . x10) x7 (λ x11 . 0)) (λ x10 . setsum (Inj1 0) 0) (setsum x7 0) (λ x10 . x7)) (λ x9 . x1 (λ x10 . λ x11 : ι → ι → ι . setsum 0 0) (λ x10 . x10)) (λ x9 . x3 (λ x10 : (ι → ι) → ι . λ x11 : ((ι → ι) → ι)ι → ι → ι . λ x12 : ι → ι . x1 (λ x13 . λ x14 : ι → ι → ι . x3 (λ x15 : (ι → ι) → ι . λ x16 : ((ι → ι) → ι)ι → ι → ι . λ x17 : ι → ι . x1 (λ x18 . λ x19 : ι → ι → ι . 0) (λ x18 . 0)) (λ x15 : ((ι → ι)ι → ι)ι → ι → ι . λ x16 . 0)) (λ x13 . 0)) (λ x10 : ((ι → ι)ι → ι)ι → ι → ι . λ x11 . setsum x11 (Inj1 0))) (Inj0 (setsum (x6 (λ x9 x10 . x6 (λ x11 x12 . 0))) 0)) (λ x9 . Inj0 0) = setsum (x5 (λ x9 : ι → ι → ι . x0 (λ x10 : ι → ((ι → ι)ι → ι) → ι . setsum (x10 0 (λ x11 : ι → ι . λ x12 . 0)) (x10 0 (λ x11 : ι → ι . λ x12 . 0))) (λ x10 . 0) (λ x10 . 0) (x1 (λ x10 . λ x11 : ι → ι → ι . x7) (λ x10 . x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0))) (λ x10 . x9 (Inj1 0) (x1 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 . 0)))) 0 (Inj1 (setsum (x2 (λ x9 : ((ι → ι → ι)ι → ι → ι)(ι → ι → ι)(ι → ι) → ι . 0) 0 (λ x9 : (ι → ι)ι → ι . 0)) (setsum 0 0))) (x0 (λ x9 : ι → ((ι → ι)ι → ι) → ι . 0) (λ x9 . 0) (λ x9 . x9) x7 (λ x9 . 0))) 0)False
as obj
-
as prop
8f084..
theory
HF
stx
12ce4..
address
TMGwZ..