Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrJAV..
/
37be6..
PUhvc..
/
3fa9f..
vout
PrJAV..
/
ff1f9..
6.26 bars
TMYuo..
/
bbf95..
ownership of
ce17e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNd3..
/
a24fb..
ownership of
eddf0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKrz..
/
99d49..
ownership of
0c96c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSx7..
/
7486d..
ownership of
68407..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPta..
/
24474..
ownership of
f566c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVd9..
/
59d23..
ownership of
02959..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTnn..
/
9cd07..
ownership of
e9266..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPSG..
/
94ddd..
ownership of
4f6df..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMM4g..
/
d341b..
ownership of
269a3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMch6..
/
4c7e9..
ownership of
36b6f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMH1m..
/
8d70d..
ownership of
38a3a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWAn..
/
977fb..
ownership of
f6f47..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKJ4..
/
030b5..
ownership of
351a0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMc3n..
/
73295..
ownership of
6dfdb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMds3..
/
7a2dd..
ownership of
b7ef4..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMX4E..
/
2c22b..
ownership of
e2c1b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJZq..
/
1b9e3..
ownership of
d6d8a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJcM..
/
6f594..
ownership of
ec414..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNsh..
/
22316..
ownership of
241a7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZbu..
/
f0001..
ownership of
ad499..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWrC..
/
ff9d8..
ownership of
e3e5a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUHU..
/
6798b..
ownership of
339c6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJ98..
/
b6663..
ownership of
8e8df..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSep..
/
ffa8b..
ownership of
026ac..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTi7..
/
329a0..
ownership of
97fa3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKtT..
/
8a27d..
ownership of
351be..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXUt..
/
8f394..
ownership of
41463..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRxJ..
/
81b01..
ownership of
d2e51..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKmc..
/
e1bf3..
ownership of
4527b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNwr..
/
f403b..
ownership of
4362c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUNn..
/
dacb6..
ownership of
24e90..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcjd..
/
60e89..
ownership of
5c48b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLn5..
/
50af9..
ownership of
6c03f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUWR..
/
b214b..
ownership of
08ea0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMS9g..
/
542e1..
ownership of
b5cca..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWhJ..
/
4ad49..
ownership of
20e26..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMEsH..
/
638c6..
ownership of
c8ef9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMb6W..
/
22bd9..
ownership of
1bda1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLDY..
/
2511b..
ownership of
f08d2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLj2..
/
72040..
ownership of
ae159..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMFtS..
/
844ae..
ownership of
11f8a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLCR..
/
03836..
ownership of
32002..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUji..
/
c4669..
ownership of
0ebf9..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZiu..
/
b7cb0..
ownership of
25038..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMH8Z..
/
825dc..
ownership of
99224..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPGy..
/
86b7c..
ownership of
159c7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZ8X..
/
7a442..
ownership of
01342..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXMD..
/
148d9..
ownership of
f4391..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUvP..
/
373cf..
ownership of
266cd..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbSs..
/
bcefe..
ownership of
0cd6b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSy5..
/
41af8..
ownership of
95c74..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPeg..
/
9fa08..
ownership of
b067a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLXQ..
/
ab91a..
ownership of
bad75..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMc9d..
/
aa214..
ownership of
08143..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJdM..
/
42272..
ownership of
26250..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMN39..
/
0c76d..
ownership of
919ce..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUpY..
/
002e2..
ownership of
37d05..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTon..
/
a2c66..
ownership of
e0daa..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMM9Q..
/
5c24f..
ownership of
27a76..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcSd..
/
24482..
ownership of
3b445..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMF9Z..
/
5a18d..
ownership of
5dac6..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMctJ..
/
203cb..
ownership of
49e71..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLt6..
/
43d7f..
ownership of
865f2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXeF..
/
61e13..
ownership of
90491..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMU5K..
/
67acf..
ownership of
1404e..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSL8..
/
e0e2e..
ownership of
6cb9a..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaxy..
/
2bd1b..
ownership of
54c54..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMNtP..
/
e2c99..
ownership of
44022..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJTm..
/
74c45..
ownership of
124d4..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMV5N..
/
b42fb..
ownership of
5d2a1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMLZF..
/
5d592..
ownership of
cb57d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYH7..
/
24afa..
ownership of
63dbf..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHvj..
/
a5c4e..
ownership of
9308b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMcWS..
/
ed60e..
ownership of
d8b34..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZXv..
/
42463..
ownership of
b40a2..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSCL..
/
dd168..
ownership of
e579b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMc79..
/
22316..
ownership of
a996c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMXNC..
/
19b62..
ownership of
9a2b5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZwV..
/
e1555..
ownership of
d2a86..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWRc..
/
9432f..
ownership of
730a1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMWJS..
/
e152d..
ownership of
b501f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaPK..
/
94e3d..
ownership of
14d49..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMU64..
/
e3005..
ownership of
64d60..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKBt..
/
de4de..
ownership of
8b9c8..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYoj..
/
ec749..
ownership of
aca95..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRDg..
/
c49a8..
ownership of
3c940..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZnb..
/
d94a0..
ownership of
47ab0..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMDR..
/
b73e9..
ownership of
a7a0f..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMX7e..
/
53344..
ownership of
ec710..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMEvC..
/
a5e40..
ownership of
cedcb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbZ4..
/
57ff1..
ownership of
99307..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUSB..
/
005c4..
ownership of
8fc88..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUmk..
/
ac6c4..
ownership of
09949..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTGL..
/
5a2a1..
ownership of
fa25d..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGEi..
/
95f26..
ownership of
8dbe3..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJpp..
/
326b1..
ownership of
39fc1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMZiP..
/
0c931..
ownership of
f987b..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMMv4..
/
68208..
ownership of
f35d5..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMYoT..
/
2e1fd..
ownership of
6b52c..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMPUN..
/
33869..
ownership of
e1ec1..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMca3..
/
d3bd7..
ownership of
f2fe8..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQjX..
/
31187..
ownership of
454cc..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMbGp..
/
484c4..
ownership of
81665..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMRK1..
/
971c4..
ownership of
ef950..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSuX..
/
f1dc3..
ownership of
d2fae..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMaPd..
/
8a1ff..
ownership of
66b33..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHiL..
/
1d233..
ownership of
a5370..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMSn9..
/
0c6b4..
ownership of
2fa10..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHL6..
/
59188..
ownership of
42b83..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUd7..
/
0c022..
ownership of
d1c13..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMEtW..
/
53486..
ownership of
56dde..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMVhX..
/
dc98b..
ownership of
a3ff7..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJMA..
/
9e29e..
ownership of
d44bb..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMGYe..
/
5a4d2..
ownership of
19895..
as prop with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMKD8..
/
7a330..
ownership of
3a617..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMR6i..
/
737ea..
ownership of
33f36..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMHQo..
/
0f7e2..
ownership of
b74fb..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMJzM..
/
351ed..
ownership of
61f73..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMTHa..
/
6078b..
ownership of
808af..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMUwU..
/
08276..
ownership of
b84ca..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQgk..
/
35ab4..
ownership of
5d354..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
TMQDS..
/
04158..
ownership of
b079d..
as obj with payaddr
Pr6Pc..
rights free controlledby
Pr6Pc..
upto 0
PUMpo..
/
02ad9..
doc published by
Pr6Pc..
Param
struct_b_b_e_e
struct_b_b_e_e
:
ι
→
ο
Param
pack_b_b_e_e
pack_b_b_e_e
:
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ι
Param
ap
ap
:
ι
→
ι
→
ι
Definition
decode_b
decode_b
:=
λ x0 x1 .
ap
(
ap
x0
x1
)
Param
ordsucc
ordsucc
:
ι
→
ι
Known
struct_b_b_e_e_eta
:
∀ x0 .
struct_b_b_e_e
x0
⟶
x0
=
pack_b_b_e_e
(
ap
x0
0
)
(
decode_b
(
ap
x0
1
)
)
(
decode_b
(
ap
x0
2
)
)
(
ap
x0
3
)
(
ap
x0
4
)
Known
pack_struct_b_b_e_e_E1
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x1
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E2
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
∀ x5 .
x5
∈
x0
⟶
∀ x6 .
x6
∈
x0
⟶
x2
x5
x6
∈
x0
Known
pack_struct_b_b_e_e_E3
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x3
∈
x0
Known
pack_struct_b_b_e_e_E4
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
struct_b_b_e_e
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
⟶
x4
∈
x0
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Definition
field3
Field_zero
:=
λ x0 .
ap
x0
3
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Definition
and
and
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x1
⟶
x2
)
⟶
x2
Param
unpack_b_b_e_e_o
unpack_b_b_e_e_o
:
ι
→
(
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ι
→
ι
→
ο
) →
ο
Param
explicit_CRing_with_id
explicit_CRing_with_id
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
CRing_with_id
CRing_with_id
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_CRing_with_id
x1
x4
x5
x2
x3
)
)
Theorem
CRing_with_id_eta
CRing_with_id_eta
:
∀ x0 .
CRing_with_id
x0
⟶
x0
=
pack_b_b_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field3
x0
)
(
field4
x0
)
(proof)
Known
CRing_with_id_unpack_eq
CRing_with_id_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
unpack_b_b_e_e_o
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_CRing_with_id
x6
x9
x10
x7
x8
)
=
explicit_CRing_with_id
x0
x3
x4
x1
x2
Theorem
CRing_with_id_explicit_CRing_with_id
CRing_with_id_explicit_CRing_with_id
:
∀ x0 .
CRing_with_id
x0
⟶
explicit_CRing_with_id
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
(proof)
Theorem
CRing_with_id_zero_In
CRing_with_id_zero_In
:
∀ x0 .
CRing_with_id
x0
⟶
field3
x0
∈
field0
x0
(proof)
Theorem
CRing_with_id_one_In
CRing_with_id_one_In
:
∀ x0 .
CRing_with_id
x0
⟶
field4
x0
∈
field0
x0
(proof)
Theorem
CRing_with_id_plus_clos
CRing_with_id_plus_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
(proof)
Theorem
CRing_with_id_mult_clos
CRing_with_id_mult_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
(proof)
Known
explicit_CRing_with_id_E
explicit_CRing_with_id_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_CRing_with_id
x0
x1
x2
x3
x4
⟶
x5
Theorem
CRing_with_id_plus_assoc
CRing_with_id_plus_assoc
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
(proof)
Theorem
CRing_with_id_plus_com
CRing_with_id_plus_com
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
(proof)
Theorem
CRing_with_id_zero_L
CRing_with_id_zero_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
(proof)
Theorem
CRing_with_id_plus_inv
CRing_with_id_plus_inv
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field1b
x0
x1
x3
=
field3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
CRing_with_id_mult_assoc
CRing_with_id_mult_assoc
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
(proof)
Theorem
CRing_with_id_mult_com
CRing_with_id_mult_com
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
(proof)
Theorem
CRing_with_id_one_neq_zero
CRing_with_id_one_neq_zero
:
∀ x0 .
CRing_with_id
x0
⟶
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
CRing_with_id_one_L
CRing_with_id_one_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
x1
(proof)
Theorem
CRing_with_id_distr_L
CRing_with_id_distr_L
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
x0
x1
x2
)
(
field2b
x0
x1
x3
)
(proof)
Param
nat_primrec
nat_primrec
:
ι
→
(
ι
→
ι
→
ι
) →
ι
→
ι
Definition
CRing_with_id_omega_exp
CRing_with_id_omega_exp
:=
λ x0 x1 .
nat_primrec
(
field4
x0
)
(
λ x2 .
field2b
x0
x1
)
Known
nat_primrec_0
nat_primrec_0
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
nat_primrec
x0
x1
0
=
x0
Theorem
CRing_with_id_omega_exp_0
CRing_with_id_omega_exp_0
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
x0
x1
0
=
field4
x0
(proof)
Param
omega
omega
:
ι
Param
nat_p
nat_p
:
ι
→
ο
Known
nat_primrec_S
nat_primrec_S
:
∀ x0 .
∀ x1 :
ι →
ι → ι
.
∀ x2 .
nat_p
x2
⟶
nat_primrec
x0
x1
(
ordsucc
x2
)
=
x1
x2
(
nat_primrec
x0
x1
x2
)
Known
omega_nat_p
omega_nat_p
:
∀ x0 .
x0
∈
omega
⟶
nat_p
x0
Theorem
CRing_with_id_omega_exp_S
CRing_with_id_omega_exp_S
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
x0
x1
x2
)
(proof)
Known
nat_p_omega
nat_p_omega
:
∀ x0 .
nat_p
x0
⟶
x0
∈
omega
Known
nat_0
nat_0
:
nat_p
0
Theorem
CRing_with_id_omega_exp_1
CRing_with_id_omega_exp_1
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
x0
x1
1
=
x1
(proof)
Known
nat_ind
nat_ind
:
∀ x0 :
ι → ο
.
x0
0
⟶
(
∀ x1 .
nat_p
x1
⟶
x0
x1
⟶
x0
(
ordsucc
x1
)
)
⟶
∀ x1 .
nat_p
x1
⟶
x0
x1
Theorem
CRing_with_id_omega_exp_clos
CRing_with_id_omega_exp_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
x2
∈
field0
x0
(proof)
Definition
CRing_with_id_eval_poly
CRing_with_id_eval_poly
:=
λ x0 x1 x2 x3 .
nat_primrec
(
field3
x0
)
(
λ x4 .
field1b
x0
(
field2b
x0
(
ap
x2
x4
)
(
CRing_with_id_omega_exp
x0
x3
x4
)
)
)
x1
Param
Pi
Pi
:
ι
→
(
ι
→
ι
) →
ι
Definition
setexp
setexp
:=
λ x0 x1 .
Pi
x1
(
λ x2 .
x0
)
Known
ap_Pi
ap_Pi
:
∀ x0 .
∀ x1 :
ι → ι
.
∀ x2 x3 .
x2
∈
Pi
x0
x1
⟶
x3
∈
x0
⟶
ap
x2
x3
∈
x1
x3
Known
ordsuccI2
ordsuccI2
:
∀ x0 .
x0
∈
ordsucc
x0
Definition
Subq
Subq
:=
λ x0 x1 .
∀ x2 .
x2
∈
x0
⟶
x2
∈
x1
Known
ordsuccI1
ordsuccI1
:
∀ x0 .
x0
⊆
ordsucc
x0
Theorem
CRing_with_id_eval_poly_clos
CRing_with_id_eval_poly_clos
:
∀ x0 .
CRing_with_id
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
setexp
(
field0
x0
)
x1
⟶
∀ x3 .
x3
∈
field0
x0
⟶
CRing_with_id_eval_poly
x0
x1
x2
x3
∈
field0
x0
(proof)
Definition
field0
RealsStruct_carrier
:=
λ x0 .
ap
x0
0
Definition
field1b
RealsStruct_plus
:=
λ x0 .
decode_b
(
ap
x0
1
)
Definition
field2b
RealsStruct_mult
:=
λ x0 .
decode_b
(
ap
x0
2
)
Definition
field3
Field_zero
:=
λ x0 .
ap
x0
3
Definition
field4
RealsStruct_zero
:=
λ x0 .
ap
x0
4
Param
explicit_Field
explicit_Field
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
ο
Definition
Field
Field
:=
λ x0 .
and
(
struct_b_b_e_e
x0
)
(
unpack_b_b_e_e_o
x0
(
λ x1 .
λ x2 x3 :
ι →
ι → ι
.
λ x4 x5 .
explicit_Field
x1
x4
x5
x2
x3
)
)
Theorem
Field_eta
Field_eta
:
∀ x0 .
Field
x0
⟶
x0
=
pack_b_b_e_e
(
field0
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
field3
x0
)
(
field4
x0
)
(proof)
Known
Field_unpack_eq
Field_unpack_eq
:
∀ x0 .
∀ x1 x2 :
ι →
ι → ι
.
∀ x3 x4 .
unpack_b_b_e_e_o
(
pack_b_b_e_e
x0
x1
x2
x3
x4
)
(
λ x6 .
λ x7 x8 :
ι →
ι → ι
.
λ x9 x10 .
explicit_Field
x6
x9
x10
x7
x8
)
=
explicit_Field
x0
x3
x4
x1
x2
Theorem
Field_explicit_Field
Field_explicit_Field
:
∀ x0 .
Field
x0
⟶
explicit_Field
(
field0
x0
)
(
field3
x0
)
(
field4
x0
)
(
field1b
x0
)
(
field2b
x0
)
(proof)
Theorem
Field_zero_In
Field_zero_In
:
∀ x0 .
Field
x0
⟶
field3
x0
∈
field0
x0
(proof)
Theorem
Field_one_In
Field_one_In
:
∀ x0 .
Field
x0
⟶
field4
x0
∈
field0
x0
(proof)
Theorem
Field_plus_clos
Field_plus_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_mult_clos
Field_mult_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
∈
field0
x0
(proof)
Known
explicit_Field_E
explicit_Field_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 : ο .
(
explicit_Field
x0
x1
x2
x3
x4
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x3
x6
(
x3
x7
x8
)
=
x3
(
x3
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x3
x6
x7
=
x3
x7
x6
)
⟶
x1
∈
x0
⟶
(
∀ x6 .
x6
∈
x0
⟶
x3
x1
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x3
x6
x8
=
x1
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
∈
x0
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x4
x7
x8
)
=
x4
(
x4
x6
x7
)
x8
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
x4
x6
x7
=
x4
x7
x6
)
⟶
x2
∈
x0
⟶
(
x2
=
x1
⟶
∀ x6 : ο .
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
x4
x2
x6
=
x6
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
(
x6
=
x1
⟶
∀ x7 : ο .
x7
)
⟶
∀ x7 : ο .
(
∀ x8 .
and
(
x8
∈
x0
)
(
x4
x6
x8
=
x2
)
⟶
x7
)
⟶
x7
)
⟶
(
∀ x6 .
x6
∈
x0
⟶
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
x4
x6
(
x3
x7
x8
)
=
x3
(
x4
x6
x7
)
(
x4
x6
x8
)
)
⟶
x5
)
⟶
explicit_Field
x0
x1
x2
x3
x4
⟶
x5
Theorem
Field_plus_assoc
Field_plus_assoc
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field1b
x0
x1
x2
)
x3
(proof)
Theorem
Field_plus_com
Field_plus_com
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
=
field1b
x0
x2
x1
(proof)
Theorem
Field_zero_L
Field_zero_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
(
field3
x0
)
x1
=
x1
(proof)
Theorem
Field_plus_inv
Field_plus_inv
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field1b
x0
x1
x3
=
field3
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
Field_mult_assoc
Field_mult_assoc
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field2b
x0
x2
x3
)
=
field2b
x0
(
field2b
x0
x1
x2
)
x3
(proof)
Theorem
Field_mult_com
Field_mult_com
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field2b
x0
x1
x2
=
field2b
x0
x2
x1
(proof)
Theorem
Field_one_neq_zero
Field_one_neq_zero
:
∀ x0 .
Field
x0
⟶
field4
x0
=
field3
x0
⟶
∀ x1 : ο .
x1
(proof)
Theorem
Field_one_L
Field_one_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field2b
x0
(
field4
x0
)
x1
=
x1
(proof)
Theorem
Field_mult_inv_L
Field_mult_inv_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
(
x1
=
field3
x0
⟶
∀ x2 : ο .
x2
)
⟶
∀ x2 : ο .
(
∀ x3 .
and
(
x3
∈
field0
x0
)
(
field2b
x0
x1
x3
=
field4
x0
)
⟶
x2
)
⟶
x2
(proof)
Theorem
Field_distr_L
Field_distr_L
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field2b
x0
x1
(
field1b
x0
x2
x3
)
=
field1b
x0
(
field2b
x0
x1
x2
)
(
field2b
x0
x1
x3
)
(proof)
Param
If_i
If_i
:
ο
→
ι
→
ι
→
ι
Param
setminus
setminus
:
ι
→
ι
→
ι
Param
Sing
Sing
:
ι
→
ι
Definition
Field_div
Field_div
:=
λ x0 x1 x2 .
If_i
(
and
(
x1
∈
field0
x0
)
(
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
)
)
(
prim0
(
λ x3 .
and
(
x3
∈
field0
x0
)
(
x1
=
field2b
x0
x2
x3
)
)
)
0
Definition
False
False
:=
∀ x0 : ο .
x0
Definition
not
not
:=
λ x0 : ο .
x0
⟶
False
Definition
nIn
nIn
:=
λ x0 x1 .
not
(
x0
∈
x1
)
Known
setminusE
setminusE
:
∀ x0 x1 x2 .
x2
∈
setminus
x0
x1
⟶
and
(
x2
∈
x0
)
(
nIn
x2
x1
)
Known
If_i_1
If_i_1
:
∀ x0 : ο .
∀ x1 x2 .
x0
⟶
If_i
x0
x1
x2
=
x1
Known
Eps_i_ex
Eps_i_ex
:
∀ x0 :
ι → ο
.
(
∀ x1 : ο .
(
∀ x2 .
x0
x2
⟶
x1
)
⟶
x1
)
⟶
x0
(
prim0
x0
)
Known
andI
andI
:
∀ x0 x1 : ο .
x0
⟶
x1
⟶
and
x0
x1
Known
SingI
SingI
:
∀ x0 .
x0
∈
Sing
x0
Theorem
Field_div_prop
Field_div_prop
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
and
(
Field_div
x0
x1
x2
∈
field0
x0
)
(
x1
=
field2b
x0
x2
(
Field_div
x0
x1
x2
)
)
(proof)
Theorem
Field_div_clos
Field_div_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
Field_div
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_mult_div
Field_mult_div
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field3
x0
)
)
⟶
x1
=
field2b
x0
x2
(
Field_div
x0
x1
x2
)
(proof)
Known
If_i_0
If_i_0
:
∀ x0 : ο .
∀ x1 x2 .
not
x0
⟶
If_i
x0
x1
x2
=
x2
Theorem
Field_div_undef1
Field_div_undef1
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
nIn
x1
(
field0
x0
)
⟶
Field_div
x0
x1
x2
=
0
(proof)
Theorem
Field_div_undef2
Field_div_undef2
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
nIn
x2
(
field0
x0
)
⟶
Field_div
x0
x1
x2
=
0
(proof)
Theorem
Field_div_undef3
Field_div_undef3
:
∀ x0 .
Field
x0
⟶
∀ x1 .
Field_div
x0
x1
(
field3
x0
)
=
0
(proof)
Known
Field_is_CRing_with_id
Field_is_CRing_with_id
:
∀ x0 .
Field
x0
⟶
CRing_with_id
x0
Theorem
Field_omega_exp_0
Field_omega_exp_0
:
∀ x0 .
Field
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
x0
x1
0
=
field4
x0
(proof)
Theorem
Field_omega_exp_S
Field_omega_exp_S
:
∀ x0 .
Field
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
x0
x1
x2
)
(proof)
Theorem
Field_omega_exp_1
Field_omega_exp_1
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
x0
x1
1
=
x1
(proof)
Theorem
Field_omega_exp_clos
Field_omega_exp_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
x0
x1
x2
∈
field0
x0
(proof)
Theorem
Field_eval_poly_clos
Field_eval_poly_clos
:
∀ x0 .
Field
x0
⟶
∀ x1 .
x1
∈
omega
⟶
∀ x2 .
x2
∈
setexp
(
field0
x0
)
x1
⟶
∀ x3 .
x3
∈
field0
x0
⟶
CRing_with_id_eval_poly
x0
x1
x2
x3
∈
field0
x0
(proof)
Param
RealsStruct
RealsStruct
:
ι
→
ο
Param
Field_of_RealsStruct
Field_of_RealsStruct
:
ι
→
ι
Known
Field_Field_of_RealsStruct
Field_Field_of_RealsStruct
:
∀ x0 .
RealsStruct
x0
⟶
Field
(
Field_of_RealsStruct
x0
)
Theorem
Field_of_RealsStruct_is_CRing_with_id
Field_of_RealsStruct_is_CRing_with_id
:
∀ x0 .
RealsStruct
x0
⟶
CRing_with_id
(
Field_of_RealsStruct
x0
)
(proof)
Param
RealsStruct_leq
RealsStruct_leq
:
ι
→
ι
→
ι
→
ο
Definition
RealsStruct_lt
RealsStruct_lt
:=
λ x0 x1 x2 .
and
(
RealsStruct_leq
x0
x1
x2
)
(
x1
=
x2
⟶
∀ x3 : ο .
x3
)
Theorem
RealsStruct_lt_leq
RealsStruct_lt_leq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_leq
x0
x1
x2
(proof)
Theorem
RealsStruct_lt_irref
RealsStruct_lt_irref
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
not
(
RealsStruct_lt
x0
x1
x1
)
(proof)
Known
RealsStruct_leq_antisym
RealsStruct_leq_antisym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x1
⟶
x1
=
x2
Theorem
RealsStruct_lt_leq_asym
RealsStruct_lt_leq_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
not
(
RealsStruct_leq
x0
x2
x1
)
(proof)
Theorem
RealsStruct_leq_lt_asym
RealsStruct_leq_lt_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
not
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Theorem
RealsStruct_lt_asym
RealsStruct_lt_asym
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
not
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Known
RealsStruct_leq_tra
RealsStruct_leq_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x3
⟶
RealsStruct_leq
x0
x1
x3
Theorem
RealsStruct_lt_leq_tra
RealsStruct_lt_leq_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_leq
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Theorem
RealsStruct_leq_lt_tra
RealsStruct_leq_lt_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_lt
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Theorem
RealsStruct_lt_tra
RealsStruct_lt_tra
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
x2
⟶
RealsStruct_lt
x0
x2
x3
⟶
RealsStruct_lt
x0
x1
x3
(proof)
Definition
or
or
:=
λ x0 x1 : ο .
∀ x2 : ο .
(
x0
⟶
x2
)
⟶
(
x1
⟶
x2
)
⟶
x2
Known
xm
xm
:
∀ x0 : ο .
or
x0
(
not
x0
)
Known
RealsStruct_leq_linear
RealsStruct_leq_linear
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
RealsStruct_leq
x0
x1
x2
)
(
RealsStruct_leq
x0
x2
x1
)
Known
neq_i_sym
neq_i_sym
:
∀ x0 x1 .
(
x0
=
x1
⟶
∀ x2 : ο .
x2
)
⟶
x1
=
x0
⟶
∀ x2 : ο .
x2
Theorem
RealsStruct_lt_trich_impred
RealsStruct_lt_trich_impred
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 : ο .
(
RealsStruct_lt
x0
x1
x2
⟶
x3
)
⟶
(
x1
=
x2
⟶
x3
)
⟶
(
RealsStruct_lt
x0
x2
x1
⟶
x3
)
⟶
x3
(proof)
Known
orIL
orIL
:
∀ x0 x1 : ο .
x0
⟶
or
x0
x1
Known
orIR
orIR
:
∀ x0 x1 : ο .
x1
⟶
or
x0
x1
Theorem
RealsStruct_lt_trich
RealsStruct_lt_trich
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
or
(
RealsStruct_lt
x0
x1
x2
)
(
x1
=
x2
)
)
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Known
RealsStruct_leq_refl
RealsStruct_leq_refl
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x1
Theorem
RealsStruct_leq_lt_linear
RealsStruct_leq_lt_linear
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
or
(
RealsStruct_leq
x0
x1
x2
)
(
RealsStruct_lt
x0
x2
x1
)
(proof)
Param
Sep
Sep
:
ι
→
(
ι
→
ο
) →
ι
Param
natOfOrderedField_p
natOfOrderedField_p
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ι
→
ο
Param
RealsStruct_one
RealsStruct_one
:
ι
→
ι
Definition
RealsStruct_N
RealsStruct_N
:=
λ x0 .
Sep
(
field0
x0
)
(
natOfOrderedField_p
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
)
Param
explicit_Reals
explicit_Reals
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Param
explicit_OrderedField
explicit_OrderedField
:
ι
→
ι
→
ι
→
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ι
) →
(
ι
→
ι
→
ο
) →
ο
Definition
lt
lt
:=
λ x0 x1 x2 .
λ x3 x4 :
ι →
ι → ι
.
λ x5 :
ι →
ι → ο
.
λ x6 x7 .
and
(
x5
x6
x7
)
(
x6
=
x7
⟶
∀ x8 : ο .
x8
)
Known
explicit_Reals_E
explicit_Reals_E
:
∀ x0 x1 x2 .
∀ x3 x4 :
ι →
ι → ι
.
∀ x5 :
ι →
ι → ο
.
∀ x6 : ο .
(
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
explicit_OrderedField
x0
x1
x2
x3
x4
x5
⟶
(
∀ x7 .
x7
∈
x0
⟶
∀ x8 .
x8
∈
x0
⟶
lt
x0
x1
x2
x3
x4
x5
x1
x7
⟶
x5
x1
x8
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
(
x5
x8
(
x4
x10
x7
)
)
⟶
x9
)
⟶
x9
)
⟶
(
∀ x7 .
x7
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
∀ x8 .
x8
∈
setexp
x0
(
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
)
⟶
(
∀ x9 .
x9
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
and
(
x5
(
ap
x7
x9
)
(
ap
x8
x9
)
)
(
x5
(
ap
x7
x9
)
(
ap
x7
(
x3
x9
x2
)
)
)
)
(
x5
(
ap
x8
(
x3
x9
x2
)
)
(
ap
x8
x9
)
)
)
⟶
∀ x9 : ο .
(
∀ x10 .
and
(
x10
∈
x0
)
(
∀ x11 .
x11
∈
Sep
x0
(
natOfOrderedField_p
x0
x1
x2
x3
x4
x5
)
⟶
and
(
x5
(
ap
x7
x11
)
x10
)
(
x5
x10
(
ap
x8
x11
)
)
)
⟶
x9
)
⟶
x9
)
⟶
x6
)
⟶
explicit_Reals
x0
x1
x2
x3
x4
x5
⟶
x6
Known
RealsStruct_explicit_Reals
RealsStruct_explicit_Reals
:
∀ x0 .
RealsStruct
x0
⟶
explicit_Reals
(
field0
x0
)
(
field4
x0
)
(
RealsStruct_one
x0
)
(
field1b
x0
)
(
field2b
x0
)
(
RealsStruct_leq
x0
)
Theorem
RealsStruct_Arch
RealsStruct_Arch
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_lt
x0
(
field4
x0
)
x1
⟶
RealsStruct_leq
x0
(
field4
x0
)
x2
⟶
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
RealsStruct_N
x0
)
(
RealsStruct_leq
x0
x2
(
field2b
x0
x4
x1
)
)
⟶
x3
)
⟶
x3
(proof)
Known
Field_of_RealsStruct_0
Field_of_RealsStruct_0
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
0
=
field0
x0
Known
Field_of_RealsStruct_2f
Field_of_RealsStruct_2f
:
∀ x0 .
RealsStruct
x0
⟶
(
λ x2 .
ap
(
ap
(
ap
(
Field_of_RealsStruct
x0
)
2
)
x2
)
)
=
field2b
x0
Known
Field_of_RealsStruct_3
Field_of_RealsStruct_3
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
3
=
field4
x0
Theorem
241a7..
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
and
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
)
(
x1
=
field2b
x0
x2
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
)
)
(proof)
Theorem
RealsStruct_div_clos
RealsStruct_div_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
(proof)
Theorem
RealsStruct_mult_div
RealsStruct_mult_div
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
setminus
(
field0
x0
)
(
Sing
(
field4
x0
)
)
⟶
x1
=
field2b
x0
x2
(
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
)
(proof)
Theorem
RealsStruct_div_undef1
RealsStruct_div_undef1
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
nIn
x1
(
field0
x0
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
=
0
(proof)
Theorem
RealsStruct_div_undef2
RealsStruct_div_undef2
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
nIn
x2
(
field0
x0
)
⟶
Field_div
(
Field_of_RealsStruct
x0
)
x1
x2
=
0
(proof)
Theorem
RealsStruct_div_undef3
RealsStruct_div_undef3
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
Field_div
(
Field_of_RealsStruct
x0
)
x1
(
field4
x0
)
=
0
(proof)
Known
Field_of_RealsStruct_4
Field_of_RealsStruct_4
:
∀ x0 .
ap
(
Field_of_RealsStruct
x0
)
4
=
RealsStruct_one
x0
Theorem
RealsStruct_omega_exp_0
RealsStruct_omega_exp_0
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
0
=
RealsStruct_one
x0
(proof)
Theorem
RealsStruct_omega_exp_S
RealsStruct_omega_exp_S
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
(
ordsucc
x2
)
=
field2b
x0
x1
(
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
x2
)
(proof)
Theorem
RealsStruct_omega_exp_1
RealsStruct_omega_exp_1
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
1
=
x1
(proof)
Theorem
RealsStruct_omega_exp_clos
RealsStruct_omega_exp_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
omega
⟶
CRing_with_id_omega_exp
(
Field_of_RealsStruct
x0
)
x1
x2
∈
field0
x0
(proof)
Param
RealsStruct_Npos
RealsStruct_Npos
:
ι
→
ι
Definition
RealsStruct_divides
RealsStruct_divides
:=
λ x0 x1 x2 .
∀ x3 : ο .
(
∀ x4 .
and
(
x4
∈
RealsStruct_Npos
x0
)
(
field2b
x0
x1
x4
=
x2
)
⟶
x3
)
⟶
x3
Definition
RealsStruct_Primes
RealsStruct_Primes
:=
λ x0 .
{x1 ∈
RealsStruct_N
x0
|
and
(
RealsStruct_lt
x0
(
RealsStruct_one
x0
)
x1
)
(
∀ x2 .
x2
∈
RealsStruct_Npos
x0
⟶
RealsStruct_divides
x0
x2
x1
⟶
or
(
x2
=
RealsStruct_one
x0
)
(
x2
=
x1
)
)
}
Definition
RealsStruct_coprime
RealsStruct_coprime
:=
λ x0 x1 x2 .
∀ x3 .
x3
∈
RealsStruct_Npos
x0
⟶
RealsStruct_divides
x0
x3
x1
⟶
RealsStruct_divides
x0
x3
x2
⟶
x3
=
RealsStruct_one
x0
Param
Field_minus
Field_minus
:
ι
→
ι
→
ι
Definition
RealsStruct_abs
RealsStruct_abs
:=
λ x0 x1 .
If_i
(
RealsStruct_leq
x0
(
field4
x0
)
x1
)
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
Known
RealsStruct_minus_clos
RealsStruct_minus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
x1
∈
field0
x0
Theorem
RealsStruct_abs_clos
RealsStruct_abs_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_abs
x0
x1
∈
field0
x0
(proof)
Theorem
RealsStruct_abs_nonneg_case
RealsStruct_abs_nonneg_case
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
x1
⟶
RealsStruct_abs
x0
x1
=
x1
(proof)
Known
RealsStruct_zero_In
RealsStruct_zero_In
:
∀ x0 .
RealsStruct
x0
⟶
field4
x0
∈
field0
x0
Theorem
RealsStruct_abs_neg_case
RealsStruct_abs_neg_case
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_lt
x0
x1
(
field4
x0
)
⟶
RealsStruct_abs
x0
x1
=
Field_minus
(
Field_of_RealsStruct
x0
)
x1
(proof)
Known
RealsStruct_minus_zero
RealsStruct_minus_zero
:
∀ x0 .
RealsStruct
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
field4
x0
)
=
field4
x0
Known
RealsStruct_minus_leq
RealsStruct_minus_leq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_leq
x0
x1
x2
⟶
RealsStruct_leq
x0
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
Known
FalseE
FalseE
:
False
⟶
∀ x0 : ο .
x0
Theorem
RealsStruct_abs_nonneg
RealsStruct_abs_nonneg
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_leq
x0
(
field4
x0
)
(
RealsStruct_abs
x0
x1
)
(proof)
Known
RealsStruct_minus_invol
RealsStruct_minus_invol
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
Field_minus
(
Field_of_RealsStruct
x0
)
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
x1
Theorem
RealsStruct_abs_zero_inv
RealsStruct_abs_zero_inv
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
RealsStruct_abs
x0
x1
=
field4
x0
⟶
x1
=
field4
x0
(proof)
Known
RealsStruct_plus_cancelR
RealsStruct_plus_cancelR
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
∀ x3 .
x3
∈
field0
x0
⟶
field1b
x0
x1
x3
=
field1b
x0
x2
x3
⟶
x1
=
x2
Known
RealsStruct_minus_R
RealsStruct_minus_R
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
field1b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x1
)
=
field4
x0
Known
RealsStruct_plus_clos
RealsStruct_plus_clos
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
field1b
x0
x1
x2
∈
field0
x0
Theorem
RealsStruct_dist_zero_eq
RealsStruct_dist_zero_eq
:
∀ x0 .
RealsStruct
x0
⟶
∀ x1 .
x1
∈
field0
x0
⟶
∀ x2 .
x2
∈
field0
x0
⟶
RealsStruct_abs
x0
(
field1b
x0
x1
(
Field_minus
(
Field_of_RealsStruct
x0
)
x2
)
)
=
field4
x0
⟶
x1
=
x2
(proof)