Search for blocks/addresses/...

Proofgold Term Root Disambiguation

∀ x0 : (ι → ι)ι → (ι → ι)((ι → ι)ι → ι) → ι . ∀ x1 : (((ι → ι) → ι)ι → ((ι → ι)ι → ι)ι → ι)ι → ι . ∀ x2 : ((ι → (ι → ι → ι) → ι)(((ι → ι) → ι) → ι)(ι → ι)ι → ι)ι → ι . ∀ x3 : ((((ι → ι → ι)(ι → ι)ι → ι) → ι) → ι)(ι → ι)ι → ι . (∀ x4 : ι → ι . ∀ x5 x6 x7 . x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x0 (λ x10 . Inj0 0) x6 (λ x10 . x2 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι . λ x13 : ι → ι . λ x14 . setsum 0 (setsum 0 0)) (x0 (λ x11 . setsum 0 0) (Inj0 0) (λ x11 . setsum 0 0) (λ x11 : ι → ι . λ x12 . x10))) (λ x10 : ι → ι . λ x11 . 0)) (λ x9 . 0) (setsum (x0 (λ x9 . Inj1 x7) x5 (λ x9 . x7) (λ x9 : ι → ι . λ x10 . 0)) 0) = Inj1 0)(∀ x4 : ι → (ι → ι → ι) → ι . ∀ x5 : ι → ι . ∀ x6 x7 . x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x6) (x2 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 . 0)) (x2 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 . x10 (λ x13 : ι → ι . setsum (x13 0) 0)) (Inj1 (Inj1 (x4 0 (λ x9 x10 . 0))))) = x6)(∀ x4 . ∀ x5 : (ι → (ι → ι)ι → ι)(ι → ι → ι)ι → ι → ι . ∀ x6 : ι → ι → ι . ∀ x7 . x2 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 . 0) (x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . x12) (Inj0 (x0 (λ x9 . x7) (setsum 0 0) (λ x9 . setsum 0 0) (λ x9 : ι → ι . λ x10 . x6 0 0)))) = x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . Inj0 (x9 (λ x13 . x0 (λ x14 . 0) x10 (λ x14 . x2 (λ x15 : ι → (ι → ι → ι) → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι . λ x18 . 0) 0) (λ x14 : ι → ι . λ x15 . Inj0 0)))) x4)(∀ x4 . ∀ x5 : (ι → ι)(ι → ι → ι) → ι . ∀ x6 . ∀ x7 : ι → ι → ι . x2 (λ x9 : ι → (ι → ι → ι) → ι . λ x10 : ((ι → ι) → ι) → ι . λ x11 : ι → ι . λ x12 . setsum (setsum (setsum (Inj1 0) (x10 (λ x13 : ι → ι . 0))) (x0 (λ x13 . Inj1 0) (x1 (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : (ι → ι)ι → ι . λ x16 . 0) 0) (λ x13 . Inj1 0) (λ x13 : ι → ι . λ x14 . x13 0))) 0) (Inj0 (setsum (x0 (λ x9 . x0 (λ x10 . 0) 0 (λ x10 . 0) (λ x10 : ι → ι . λ x11 . 0)) 0 (λ x9 . Inj0 0) (λ x9 : ι → ι . λ x10 . 0)) 0)) = x7 (x5 (λ x9 . x0 (λ x10 . 0) (Inj1 (Inj1 0)) (λ x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 . setsum 0 0) 0) (λ x10 : ι → ι . λ x11 . x3 (λ x12 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x12 (λ x13 : ι → ι → ι . λ x14 : ι → ι . λ x15 . 0)) (λ x12 . x1 (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : (ι → ι)ι → ι . λ x16 . 0) 0) 0)) (λ x9 x10 . x2 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι . λ x13 : ι → ι . λ x14 . Inj0 (x11 0 (λ x15 x16 . 0))) 0)) (x0 (λ x9 . x1 (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : (ι → ι)ι → ι . λ x13 . x12 (λ x14 . x1 (λ x15 : (ι → ι) → ι . λ x16 . λ x17 : (ι → ι)ι → ι . λ x18 . 0) 0) x11) x6) (x5 (λ x9 . 0) (λ x9 x10 . x1 (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 . x11 (λ x15 . 0)) (Inj0 0))) (λ x9 . Inj0 (x2 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι . λ x13 . Inj0 0) (x1 (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : (ι → ι)ι → ι . λ x13 . 0) 0))) (λ x9 : ι → ι . λ x10 . x6)))(∀ x4 : (ι → ι) → ι . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : ι → ι → ι → ι . ∀ x7 : (ι → ι → ι)(ι → ι)(ι → ι)ι → ι . x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . x1 (λ x13 : (ι → ι) → ι . λ x14 . λ x15 : (ι → ι)ι → ι . λ x16 . x0 (λ x17 . Inj1 (setsum 0 0)) (setsum (x3 (λ x17 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x17 . 0) 0) x16) (λ x17 . setsum x17 (x3 (λ x18 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x18 . 0) 0)) (λ x17 : ι → ι . λ x18 . x17 (x1 (λ x19 : (ι → ι) → ι . λ x20 . λ x21 : (ι → ι)ι → ι . λ x22 . 0) 0))) x10) 0 = Inj1 (setsum (x5 (x4 (λ x9 . x6 0 0 0)) (λ x9 : ι → ι . x9 (x1 (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : (ι → ι)ι → ι . λ x13 . 0) 0))) 0))(∀ x4 . ∀ x5 : ι → ((ι → ι) → ι) → ι . ∀ x6 : (ι → ι)ι → ι . ∀ x7 : ι → ι . x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . 0) 0 = x7 (x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . x11 (λ x13 . x0 (λ x14 . x0 (λ x15 . 0) 0 (λ x15 . 0) (λ x15 : ι → ι . λ x16 . 0)) (Inj1 0) (λ x14 . x1 (λ x15 : (ι → ι) → ι . λ x16 . λ x17 : (ι → ι)ι → ι . λ x18 . 0) 0) (λ x14 : ι → ι . λ x15 . 0)) 0) (x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . x12) (x1 (λ x9 : (ι → ι) → ι . λ x10 . λ x11 : (ι → ι)ι → ι . λ x12 . Inj0 0) x4))))(∀ x4 x5 . ∀ x6 : ι → ι . ∀ x7 : ((ι → ι → ι) → ι)ι → ι . x0 (λ x9 . x5) (Inj1 (x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x2 (λ x10 : ι → (ι → ι → ι) → ι . λ x11 : ((ι → ι) → ι) → ι . λ x12 : ι → ι . λ x13 . Inj0 0) 0) (λ x9 . Inj0 (setsum 0 0)) x4)) (λ x9 . x6 0) (λ x9 : ι → ι . λ x10 . 0) = x5)(∀ x4 . ∀ x5 : ((ι → ι)ι → ι) → ι . ∀ x6 x7 . x0 (λ x9 . x9) 0 (λ x9 . x3 (λ x10 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x2 (λ x11 : ι → (ι → ι → ι) → ι . λ x12 : ((ι → ι) → ι) → ι . λ x13 : ι → ι . λ x14 . x13 (x11 0 (λ x15 x16 . 0))) x7) (λ x10 . setsum (x1 (λ x11 : (ι → ι) → ι . λ x12 . λ x13 : (ι → ι)ι → ι . λ x14 . x2 (λ x15 : ι → (ι → ι → ι) → ι . λ x16 : ((ι → ι) → ι) → ι . λ x17 : ι → ι . λ x18 . 0) 0) 0) 0) 0) (λ x9 : ι → ι . λ x10 . setsum 0 (setsum (x3 (λ x11 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x0 (λ x12 . 0) 0 (λ x12 . 0) (λ x12 : ι → ι . λ x13 . 0)) (λ x11 . setsum 0 0) x7) x7)) = x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . x3 (λ x10 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x10 . 0) 0) (λ x9 . setsum (setsum (x1 (λ x10 : (ι → ι) → ι . λ x11 . λ x12 : (ι → ι)ι → ι . λ x13 . 0) (x5 (λ x10 : ι → ι . λ x11 . 0))) (x0 (λ x10 . 0) 0 (λ x10 . x9) (λ x10 : ι → ι . λ x11 . x0 (λ x12 . 0) 0 (λ x12 . 0) (λ x12 : ι → ι . λ x13 . 0)))) (x3 (λ x10 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . setsum (x0 (λ x11 . 0) 0 (λ x11 . 0) (λ x11 : ι → ι . λ x12 . 0)) 0) (λ x10 . 0) 0)) (x3 (λ x9 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . Inj0 x6) (λ x9 . x7) (x0 (λ x9 . 0) (x0 (λ x9 . setsum 0 0) x4 (λ x9 . x9) (λ x9 : ι → ι . λ x10 . x3 (λ x11 : ((ι → ι → ι)(ι → ι)ι → ι) → ι . 0) (λ x11 . 0) 0)) (λ x9 . x0 (λ x10 . Inj0 0) 0 (λ x10 . Inj0 0) (λ x10 : ι → ι . λ x11 . setsum 0 0)) (λ x9 : ι → ι . λ x10 . x6))))False
as obj
-
as prop
f4c43..
theory
HF
stx
6b899..
address
TMZsT..