Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq clvec (crab (λ x1 . wcel (cfv (cv x1) csca) cdr) (λ x1 . clmod))wceq csra (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . co (co (co (cv x1) (cop (cfv cnx csca) (co (cv x1) (cv x2) cress)) csts) (cop (cfv cnx cvsca) (cfv (cv x1) cmulr)) csts) (cop (cfv cnx cip) (cfv (cv x1) cmulr)) csts)))wceq crglmod (cmpt (λ x1 . cvv) (λ x1 . cfv (cfv (cv x1) cbs) (cfv (cv x1) csra)))wceq clidl (ccom clss crglmod)wceq crsp (ccom clspn crglmod)wceq c2idl (cmpt (λ x1 . cvv) (λ x1 . cin (cfv (cv x1) clidl) (cfv (cfv (cv x1) coppr) clidl)))wceq clpidl (cmpt (λ x1 . crg) (λ x1 . ciun (λ x2 . cfv (cv x1) cbs) (λ x2 . csn (cfv (csn (cv x2)) (cfv (cv x1) crsp)))))wceq clpir (crab (λ x1 . wceq (cfv (cv x1) clidl) (cfv (cv x1) clpidl)) (λ x1 . crg))wceq cnzr (crab (λ x1 . wne (cfv (cv x1) cur) (cfv (cv x1) c0g)) (λ x1 . crg))wceq crlreg (cmpt (λ x1 . cvv) (λ x1 . crab (λ x2 . wral (λ x3 . wceq (co (cv x2) (cv x3) (cfv (cv x1) cmulr)) (cfv (cv x1) c0g)wceq (cv x3) (cfv (cv x1) c0g)) (λ x3 . cfv (cv x1) cbs)) (λ x2 . cfv (cv x1) cbs)))wceq cdomn (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wral (λ x4 . wral (λ x5 . wceq (co (cv x4) (cv x5) (cfv (cv x1) cmulr)) (cv x3)wo (wceq (cv x4) (cv x3)) (wceq (cv x5) (cv x3))) (λ x5 . cv x2)) (λ x4 . cv x2)) (cfv (cv x1) c0g)) (cfv (cv x1) cbs)) (λ x1 . cnzr))wceq cidom (cin ccrg cdomn)wceq cpid (cin cidom clpir)wceq casa (crab (λ x1 . wsbc (λ x2 . wa (wcel (cv x2) ccrg) (wral (λ x3 . wral (λ x4 . wral (λ x5 . wsbc (λ x6 . wsbc (λ x7 . wa (wceq (co (co (cv x3) (cv x4) (cv x6)) (cv x5) (cv x7)) (co (cv x3) (co (cv x4) (cv x5) (cv x7)) (cv x6))) (wceq (co (cv x4) (co (cv x3) (cv x5) (cv x6)) (cv x7)) (co (cv x3) (co (cv x4) (cv x5) (cv x7)) (cv x6)))) (cfv (cv x1) cmulr)) (cfv (cv x1) cvsca)) (λ x5 . cfv (cv x1) cbs)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x2) cbs))) (cfv (cv x1) csca)) (λ x1 . cin clmod crg))wceq casp (cmpt (λ x1 . casa) (λ x1 . cmpt (λ x2 . cpw (cfv (cv x1) cbs)) (λ x2 . cint (crab (λ x3 . wss (cv x2) (cv x3)) (λ x3 . cin (cfv (cv x1) csubrg) (cfv (cv x1) clss))))))wceq cascl (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cfv (cv x1) csca) cbs) (λ x2 . co (cv x2) (cfv (cv x1) cur) (cfv (cv x1) cvsca))))wceq cmps (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . csb (crab (λ x3 . wcel (cima (ccnv (cv x3)) cn) cfn) (λ x3 . co cn0 (cv x1) cmap)) (λ x3 . csb (co (cfv (cv x2) cbs) (cv x3) cmap) (λ x4 . cun (ctp (cop (cfv cnx cbs) (cv x4)) (cop (cfv cnx cplusg) (cres (cof (cfv (cv x2) cplusg)) (cxp (cv x4) (cv x4)))) (cop (cfv cnx cmulr) (cmpt2 (λ x5 x6 . cv x4) (λ x5 x6 . cv x4) (λ x5 x6 . cmpt (λ x7 . cv x3) (λ x7 . co (cv x2) (cmpt (λ x8 . crab (λ x9 . wbr (cv x9) (cv x7) (cofr cle)) (λ x9 . cv x3)) (λ x8 . co (cfv (cv x8) (cv x5)) (cfv (co (cv x7) (cv x8) (cof cmin)) (cv x6)) (cfv (cv x2) cmulr))) cgsu))))) (ctp (cop (cfv cnx csca) (cv x2)) (cop (cfv cnx cvsca) (cmpt2 (λ x5 x6 . cfv (cv x2) cbs) (λ x5 x6 . cv x4) (λ x5 x6 . co (cxp (cv x3) (csn (cv x5))) (cv x6) (cof (cfv (cv x2) cmulr))))) (cop (cfv cnx cts) (cfv (cxp (cv x3) (csn (cfv (cv x2) ctopn))) cpt)))))))wceq cmvr (cmpt2 (λ x1 x2 . cvv) (λ x1 x2 . cvv) (λ x1 x2 . cmpt (λ x3 . cv x1) (λ x3 . cmpt (λ x4 . crab (λ x5 . wcel (cima (ccnv (cv x5)) cn) cfn) (λ x5 . co cn0 (cv x1) cmap)) (λ x4 . cif (wceq (cv x4) (cmpt (λ x5 . cv x1) (λ x5 . cif (wceq (cv x5) (cv x3)) c1 cc0))) (cfv (cv x2) cur) (cfv (cv x2) c0g)))))x0)x0
type
prop
theory
SetMM
name
df_lvec__df_sra__df_rgmod__df_lidl__df_rsp__df_2idl__df_lpidl__df_lpir__df_nzr__df_rlreg__df_domn__df_idom__df_pid__df_assa__df_asp__df_ascl__df_psr__df_mvr
proof
PUV1k..
Megalodon
-
proofgold address
TMPD4..
creator
36224 PrCmT../74c62..
owner
36224 PrCmT../74c62..
term root
b7d9f..