Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cnrg (crab (λ x1 . wcel (cfv (cv x1) cnm) (cfv (cv x1) cabv)) (λ x1 . cngp))wceq cnlm (crab (λ x1 . wsbc (λ x2 . wa (wcel (cv x2) cnrg) (wral (λ x3 . wral (λ x4 . wceq (cfv (co (cv x3) (cv x4) (cfv (cv x1) cvsca)) (cfv (cv x1) cnm)) (co (cfv (cv x3) (cfv (cv x2) cnm)) (cfv (cv x4) (cfv (cv x1) cnm)) cmul)) (λ x4 . cfv (cv x1) cbs)) (λ x3 . cfv (cv x2) cbs))) (cfv (cv x1) csca)) (λ x1 . cin cngp clmod))wceq cnvc (cin cnlm clvec)wceq cnmo (cmpt2 (λ x1 x2 . cngp) (λ x1 x2 . cngp) (λ x1 x2 . cmpt (λ x3 . co (cv x1) (cv x2) cghm) (λ x3 . cinf (crab (λ x4 . wral (λ x5 . wbr (cfv (cfv (cv x5) (cv x3)) (cfv (cv x2) cnm)) (co (cv x4) (cfv (cv x5) (cfv (cv x1) cnm)) cmul) cle) (λ x5 . cfv (cv x1) cbs)) (λ x4 . co cc0 cpnf cico)) cxr clt)))wceq cnghm (cmpt2 (λ x1 x2 . cngp) (λ x1 x2 . cngp) (λ x1 x2 . cima (ccnv (co (cv x1) (cv x2) cnmo)) cr))wceq cnmhm (cmpt2 (λ x1 x2 . cnlm) (λ x1 x2 . cnlm) (λ x1 x2 . cin (co (cv x1) (cv x2) clmhm) (co (cv x1) (cv x2) cnghm)))wceq cii (cfv (cres (ccom cabs cmin) (cxp (co cc0 c1 cicc) (co cc0 c1 cicc))) cmopn)wceq ccncf (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . cpw cc) (λ x1 x2 . crab (λ x3 . wral (λ x4 . wral (λ x5 . wrex (λ x6 . wral (λ x7 . wbr (cfv (co (cv x4) (cv x7) cmin) cabs) (cv x6) cltwbr (cfv (co (cfv (cv x4) (cv x3)) (cfv (cv x7) (cv x3)) cmin) cabs) (cv x5) clt) (λ x7 . cv x1)) (λ x6 . crp)) (λ x5 . crp)) (λ x4 . cv x1)) (λ x3 . co (cv x2) (cv x1) cmap)))wceq chtpy (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . ctop) (λ x1 x2 . cmpt2 (λ x3 x4 . co (cv x1) (cv x2) ccn) (λ x3 x4 . co (cv x1) (cv x2) ccn) (λ x3 x4 . crab (λ x5 . wral (λ x6 . wa (wceq (co (cv x6) cc0 (cv x5)) (cfv (cv x6) (cv x3))) (wceq (co (cv x6) c1 (cv x5)) (cfv (cv x6) (cv x4)))) (λ x6 . cuni (cv x1))) (λ x5 . co (co (cv x1) cii ctx) (cv x2) ccn))))wceq cphtpy (cmpt (λ x1 . ctop) (λ x1 . cmpt2 (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . crab (λ x4 . wral (λ x5 . wa (wceq (co cc0 (cv x5) (cv x4)) (cfv cc0 (cv x2))) (wceq (co c1 (cv x5) (cv x4)) (cfv c1 (cv x2)))) (λ x5 . co cc0 c1 cicc)) (λ x4 . co (cv x2) (cv x3) (co cii (cv x1) chtpy)))))wceq cphtpc (cmpt (λ x1 . ctop) (λ x1 . copab (λ x2 x3 . wa (wss (cpr (cv x2) (cv x3)) (co cii (cv x1) ccn)) (wne (co (cv x2) (cv x3) (cfv (cv x1) cphtpy)) c0))))wceq cpco (cmpt (λ x1 . ctop) (λ x1 . cmpt2 (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . co cii (cv x1) ccn) (λ x2 x3 . cmpt (λ x4 . co cc0 c1 cicc) (λ x4 . cif (wbr (cv x4) (co c1 c2 cdiv) cle) (cfv (co c2 (cv x4) cmul) (cv x2)) (cfv (co (co c2 (cv x4) cmul) c1 cmin) (cv x3))))))wceq comi (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . ctp (cop (cfv cnx cbs) (crab (λ x3 . wa (wceq (cfv cc0 (cv x3)) (cv x2)) (wceq (cfv c1 (cv x3)) (cv x2))) (λ x3 . co cii (cv x1) ccn))) (cop (cfv cnx cplusg) (cfv (cv x1) cpco)) (cop (cfv cnx cts) (co (cv x1) cii cxko))))wceq comn (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . cseq (ccom (cmpt2 (λ x3 x4 . cvv) (λ x3 x4 . cvv) (λ x3 x4 . cop (co (cfv (cfv (cv x3) c1st) ctopn) (cfv (cv x3) c2nd) comi) (cxp (co cc0 c1 cicc) (csn (cfv (cv x3) c2nd))))) c1st) (cop (cpr (cop (cfv cnx cbs) (cuni (cv x1))) (cop (cfv cnx cts) (cv x1))) (cv x2)) cc0))wceq cpi1 (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . co (co (cv x1) (cv x2) comi) (cfv (cv x1) cphtpc) cqus))wceq cpin (cmpt2 (λ x1 x2 . ctop) (λ x1 x2 . cuni (cv x1)) (λ x1 x2 . cmpt (λ x3 . cn0) (λ x3 . co (cfv (cfv (cv x3) (co (cv x1) (cv x2) comn)) c1st) (cif (wceq (cv x3) cc0) (copab (λ x4 x5 . wrex (λ x6 . wa (wceq (cfv cc0 (cv x6)) (cv x4)) (wceq (cfv c1 (cv x6)) (cv x5))) (λ x6 . co cii (cv x1) ccn))) (cfv (cfv (cfv (cfv (co (cv x3) c1 cmin) (co (cv x1) (cv x2) comn)) c1st) ctopn) cphtpc)) cqus)))wceq cclm (crab (λ x1 . wsbc (λ x2 . wsbc (λ x3 . wa (wceq (cv x2) (co ccnfld (cv x3) cress)) (wcel (cv x3) (cfv ccnfld csubrg))) (cfv (cv x2) cbs)) (cfv (cv x1) csca)) (λ x1 . clmod))wceq ccvs (cin cclm clvec)x0)x0
type
prop
theory
SetMM
name
df_nrg__df_nlm__df_nvc__df_nmo__df_nghm__df_nmhm__df_ii__df_cncf__df_htpy__df_phtpy__df_phtpc__df_pco__df_om1__df_omn__df_pi1__df_pin__df_clm__df_cvs
proof
PUV1k..
Megalodon
-
proofgold address
TMFu1..
creator
36224 PrCmT../ff8ac..
owner
36224 PrCmT../ff8ac..
term root
62ba0..