∀ x0 : (ι → ι) → ι → ι . ∀ x1 : ((ι → ((ι → ι) → ι → ι) → ι) → ι) → (ι → ((ι → ι) → ι → ι) → (ι → ι) → ι → ι) → ι → ι . ∀ x2 : (ι → ι) → (((ι → ι → ι) → ι) → ι) → ι → ((ι → ι) → ι) → ι . ∀ x3 : (ι → (ι → ι → ι) → ι) → (ι → ι → ι → ι) → (ι → ι → ι) → ι . (∀ x4 : ι → ι → (ι → ι) → ι → ι . ∀ x5 x6 x7 . x3 (λ x9 . λ x10 : ι → ι → ι . Inj0 (x3 (λ x11 . λ x12 : ι → ι → ι . x3 (λ x13 . λ x14 : ι → ι → ι . x1 (λ x15 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x15 . λ x16 : (ι → ι) → ι → ι . λ x17 : ι → ι . λ x18 . 0) 0) (λ x13 x14 x15 . 0) (λ x13 x14 . x11)) (λ x11 x12 x13 . x11) (λ x11 x12 . 0))) (λ x9 x10 x11 . 0) (λ x9 x10 . 0) = x5) ⟶ (∀ x4 x5 x6 x7 . x3 (λ x9 . λ x10 : ι → ι → ι . Inj0 (setsum x9 x9)) (λ x9 x10 x11 . 0) (λ x9 x10 . x0 (λ x11 . x0 (λ x12 . Inj0 0) (x3 (λ x12 . λ x13 : ι → ι → ι . 0) (λ x12 x13 x14 . 0) (λ x12 x13 . x2 (λ x14 . 0) (λ x14 : (ι → ι → ι) → ι . 0) 0 (λ x14 : ι → ι . 0)))) (setsum x7 (Inj1 (setsum 0 0)))) = Inj1 x6) ⟶ (∀ x4 : ι → ι . ∀ x5 : (ι → ι) → ι → (ι → ι) → ι → ι . ∀ x6 : ι → ι . ∀ x7 : ι → ((ι → ι) → ι) → ι . x2 (λ x9 . x5 (λ x10 . x10) (x2 (λ x10 . Inj0 (x7 0 (λ x11 : ι → ι . 0))) (λ x10 : (ι → ι → ι) → ι . x6 (x6 0)) (x5 (λ x10 . x3 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 x12 x13 . 0) (λ x11 x12 . 0)) (x7 0 (λ x10 : ι → ι . 0)) (λ x10 . Inj1 0) (x5 (λ x10 . 0) 0 (λ x10 . 0) 0)) (λ x10 : ι → ι . x10 x9)) (x0 (λ x10 . 0)) 0) (λ x9 : (ι → ι → ι) → ι . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x0 (λ x11 . x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0) (Inj0 0)) (x1 (λ x11 : ι → ((ι → ι) → ι → ι) → ι . x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0) 0) (λ x11 . λ x12 : (ι → ι) → ι → ι . λ x13 : ι → ι . λ x14 . x0 (λ x15 . 0) 0) (x7 0 (λ x11 : ι → ι . 0)))) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0) (setsum 0 (setsum (x3 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 x11 x12 . 0) (λ x10 x11 . 0)) 0))) 0 (λ x9 : ι → ι . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . x7 (x7 (x3 (λ x11 . λ x12 : ι → ι → ι . 0) (λ x11 x12 x13 . 0) (λ x11 x12 . 0)) (λ x11 : ι → ι . Inj0 0)) (λ x11 : ι → ι . 0)) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . x13) 0) = x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . setsum (x9 0 (λ x10 : ι → ι . λ x11 . Inj1 (x0 (λ x12 . 0) 0))) (Inj1 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x11 0) (x0 (λ x9 . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . setsum (x11 (λ x14 . 0) 0) 0) (x6 (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0) 0))) (x4 0))) ⟶ (∀ x4 x5 . ∀ x6 : ι → (ι → ι) → (ι → ι) → ι . ∀ x7 : ι → ι → (ι → ι) → ι → ι . x2 (λ x9 . 0) (λ x9 : (ι → ι → ι) → ι . x7 (x0 (λ x10 . x3 (λ x11 . λ x12 : ι → ι → ι . x0 (λ x13 . 0) 0) (λ x11 x12 x13 . Inj0 0) (λ x11 x12 . 0)) (x9 (λ x10 x11 . x2 (λ x12 . 0) (λ x12 : (ι → ι → ι) → ι . 0) 0 (λ x12 : ι → ι . 0)))) 0 (λ x10 . Inj1 0) 0) 0 (λ x9 : ι → ι . 0) = setsum (x3 (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 x10 x11 . setsum x11 (setsum (Inj0 0) (x7 0 0 (λ x12 . 0) 0))) (λ x9 x10 . x9)) (x0 (λ x9 . 0) (x0 (λ x9 . Inj1 (x6 0 (λ x10 . 0) (λ x10 . 0))) 0))) ⟶ (∀ x4 : ι → ι . ∀ x5 : (((ι → ι) → ι) → ι → ι → ι) → ι → (ι → ι) → ι . ∀ x6 x7 . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x7) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x2 (λ x13 . x11 (Inj0 0)) (λ x13 : (ι → ι → ι) → ι . setsum x12 (setsum (x10 (λ x14 . 0) 0) (x10 (λ x14 . 0) 0))) 0 (λ x13 : ι → ι . setsum 0 0)) 0 = Inj0 (Inj0 (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x6) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . setsum (x0 (λ x13 . 0) 0) (setsum 0 0)) (Inj1 (Inj0 0))))) ⟶ (∀ x4 . ∀ x5 : ι → (ι → ι) → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x7 (λ x10 . x7 (λ x11 . 0))) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . x2 (λ x13 . 0) (λ x13 : (ι → ι → ι) → ι . 0) (setsum (Inj0 x9) (setsum x12 (x2 (λ x13 . 0) (λ x13 : (ι → ι → ι) → ι . 0) 0 (λ x13 : ι → ι . 0)))) (λ x13 : ι → ι . Inj0 (setsum (x3 (λ x14 . λ x15 : ι → ι → ι . 0) (λ x14 x15 x16 . 0) (λ x14 x15 . 0)) 0))) (x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . x7 (λ x10 . Inj1 0)) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . setsum (Inj1 (x10 (λ x13 . 0) 0)) (Inj0 0)) (x7 (λ x9 . 0))) = x1 (λ x9 : ι → ((ι → ι) → ι → ι) → ι . Inj0 0) (λ x9 . λ x10 : (ι → ι) → ι → ι . λ x11 : ι → ι . λ x12 . setsum (x2 (λ x13 . setsum (x0 (λ x14 . 0) 0) (x2 (λ x14 . 0) (λ x14 : (ι → ι → ι) → ι . 0) 0 (λ x14 : ι → ι . 0))) (λ x13 : (ι → ι → ι) → ι . x3 (λ x14 . λ x15 : ι → ι → ι . Inj0 0) (λ x14 x15 x16 . x16) (λ x14 x15 . x1 (λ x16 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x16 . λ x17 : (ι → ι) → ι → ι . λ x18 : ι → ι . λ x19 . 0) 0)) 0 (λ x13 : ι → ι . Inj0 (Inj0 0))) (x2 (λ x13 . setsum (x11 0) (x11 0)) (λ x13 : (ι → ι → ι) → ι . Inj1 (Inj1 0)) x9 (λ x13 : ι → ι . Inj0 x12))) (Inj0 0)) ⟶ (∀ x4 : ι → (ι → ι) → ι → ι → ι . ∀ x5 : ι → ι . ∀ x6 . ∀ x7 : ι → ι . x0 (λ x9 . 0) (Inj0 0) = Inj1 (x2 (λ x9 . 0) (λ x9 : (ι → ι → ι) → ι . setsum (x9 (λ x10 x11 . x0 (λ x12 . 0) 0)) 0) (x3 (λ x9 . λ x10 : ι → ι → ι . 0) (λ x9 x10 x11 . x1 (λ x12 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x12 . λ x13 : (ι → ι) → ι → ι . λ x14 : ι → ι . λ x15 . 0) 0) (λ x9 x10 . x10)) (λ x9 : ι → ι . x2 (λ x10 . x9 (setsum 0 0)) (λ x10 : (ι → ι → ι) → ι . Inj0 (setsum 0 0)) (x7 0) (λ x10 : ι → ι . 0)))) ⟶ (∀ x4 x5 : ι → ι . ∀ x6 . ∀ x7 : (ι → ι) → ι . x0 (λ x9 . setsum (Inj0 (x2 (λ x10 . x6) (λ x10 : (ι → ι → ι) → ι . x10 (λ x11 x12 . 0)) (Inj1 0) (λ x10 : ι → ι . x2 (λ x11 . 0) (λ x11 : (ι → ι → ι) → ι . 0) 0 (λ x11 : ι → ι . 0)))) (setsum (x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . x1 (λ x14 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x14 . λ x15 : (ι → ι) → ι → ι . λ x16 : ι → ι . λ x17 . 0) 0) 0) (x0 (λ x10 . x0 (λ x11 . 0) 0) 0))) (x7 (λ x9 . x3 (λ x10 . λ x11 : ι → ι → ι . 0) (λ x10 x11 x12 . 0) (λ x10 x11 . x7 (λ x12 . x10)))) = setsum 0 (Inj1 (x5 (x0 (λ x9 . x1 (λ x10 : ι → ((ι → ι) → ι → ι) → ι . 0) (λ x10 . λ x11 : (ι → ι) → ι → ι . λ x12 : ι → ι . λ x13 . 0) 0) (setsum 0 0))))) ⟶ False |
|