Search for blocks/addresses/...
Proofgold Signed Transaction
vin
PrP4d..
/
808e8..
PUZ8L..
/
3cf57..
vout
PrP4d..
/
08007..
0.08 bars
TMHh8..
/
5956b..
ownership of
be856..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMS8v..
/
b1603..
ownership of
607f4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGyE..
/
739fd..
ownership of
fb0e7..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTS9..
/
baac3..
ownership of
9b388..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMc14..
/
240fe..
ownership of
d0416..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGRB..
/
bf365..
ownership of
41fee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRXF..
/
aaf34..
ownership of
fa445..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMSjR..
/
a0cba..
ownership of
49ef5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXA1..
/
8c6be..
ownership of
f778f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTvB..
/
12116..
ownership of
0e5d4..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMTt7..
/
7a3cf..
ownership of
fa80e..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMH2E..
/
e49a1..
ownership of
de821..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbHA..
/
00c1d..
ownership of
03da5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMF7f..
/
d27cc..
ownership of
10dee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMb4Z..
/
ffe6f..
ownership of
b9201..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMcdk..
/
1135a..
ownership of
ddf94..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdBq..
/
27638..
ownership of
d14bb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbko..
/
ff323..
ownership of
a96f3..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMVxW..
/
f264f..
ownership of
de55f..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMJS9..
/
afbd0..
ownership of
22ae1..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMRyp..
/
2a72b..
ownership of
0cd1d..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMdYw..
/
dad7b..
ownership of
6a19a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGR3..
/
3a814..
ownership of
52729..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZKK..
/
161c8..
ownership of
224e5..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGR6..
/
75e04..
ownership of
148eb..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMLvc..
/
8805b..
ownership of
3be98..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMat7..
/
9abe2..
ownership of
31974..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbAC..
/
cef1c..
ownership of
25aee..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMGnc..
/
30419..
ownership of
32cab..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMYQv..
/
93959..
ownership of
540b6..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMXw5..
/
07eee..
ownership of
4229a..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMFfX..
/
37711..
ownership of
ad993..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMZdK..
/
56175..
ownership of
11c6b..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMNtq..
/
63ab7..
ownership of
9c484..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbxQ..
/
925cb..
ownership of
1e0e9..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
TMbxv..
/
97ab0..
ownership of
d1d79..
as prop with payaddr
PrCmT..
rights free controlledby
PrCmT..
upto 0
PUgqy..
/
7e109..
doc published by
PrCmT..
Known
df_hash__df_word__df_lsw__df_concat__df_s1__df_substr__df_splice__df_reverse__df_reps__df_csh__df_s2__df_s3__df_s4__df_s5__df_s6__df_s7__df_s8__df_trcl
:
∀ x0 : ο .
(
wceq
chash
(
cun
(
ccom
(
cres
(
crdg
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
co
(
cv
x1
)
c1
caddc
)
)
cc0
)
com
)
ccrd
)
(
cxp
(
cdif
cvv
cfn
)
(
csn
cpnf
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cword
x1
)
(
cab
(
λ x2 .
wrex
(
λ x3 .
wf
(
co
cc0
(
cv
x3
)
cfzo
)
x1
(
cv
x2
)
)
(
λ x3 .
cn0
)
)
)
)
⟶
wceq
clsw
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cfv
(
co
(
cfv
(
cv
x1
)
chash
)
c1
cmin
)
(
cv
x1
)
)
)
⟶
wceq
cconcat
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
cc0
(
co
(
cfv
(
cv
x1
)
chash
)
(
cfv
(
cv
x2
)
chash
)
caddc
)
cfzo
)
(
λ x3 .
cif
(
wcel
(
cv
x3
)
(
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfzo
)
)
(
cfv
(
cv
x3
)
(
cv
x1
)
)
(
cfv
(
co
(
cv
x3
)
(
cfv
(
cv
x1
)
chash
)
cmin
)
(
cv
x2
)
)
)
)
)
⟶
(
∀ x1 :
ι → ο
.
wceq
(
cs1
x1
)
(
csn
(
cop
cc0
(
cfv
x1
cid
)
)
)
)
⟶
wceq
csubstr
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cxp
cz
cz
)
(
λ x1 x2 .
cif
(
wss
(
co
(
cfv
(
cv
x2
)
c1st
)
(
cfv
(
cv
x2
)
c2nd
)
cfzo
)
(
cdm
(
cv
x1
)
)
)
(
cmpt
(
λ x3 .
co
cc0
(
co
(
cfv
(
cv
x2
)
c2nd
)
(
cfv
(
cv
x2
)
c1st
)
cmin
)
cfzo
)
(
λ x3 .
cfv
(
co
(
cv
x3
)
(
cfv
(
cv
x2
)
c1st
)
caddc
)
(
cv
x1
)
)
)
c0
)
)
⟶
wceq
csplice
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
co
(
co
(
co
(
cv
x1
)
(
cop
cc0
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c1st
)
)
csubstr
)
(
cfv
(
cv
x2
)
c2nd
)
cconcat
)
(
co
(
cv
x1
)
(
cop
(
cfv
(
cfv
(
cv
x2
)
c1st
)
c2nd
)
(
cfv
(
cv
x1
)
chash
)
)
csubstr
)
cconcat
)
)
⟶
wceq
creverse
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cmpt
(
λ x2 .
co
cc0
(
cfv
(
cv
x1
)
chash
)
cfzo
)
(
λ x2 .
cfv
(
co
(
co
(
cfv
(
cv
x1
)
chash
)
c1
cmin
)
(
cv
x2
)
cmin
)
(
cv
x1
)
)
)
)
⟶
wceq
creps
(
cmpt2
(
λ x1 x2 .
cvv
)
(
λ x1 x2 .
cn0
)
(
λ x1 x2 .
cmpt
(
λ x3 .
co
cc0
(
cv
x2
)
cfzo
)
(
λ x3 .
cv
x1
)
)
)
⟶
wceq
ccsh
(
cmpt2
(
λ x1 x2 .
cab
(
λ x3 .
wrex
(
λ x4 .
wfn
(
cv
x3
)
(
co
cc0
(
cv
x4
)
cfzo
)
)
(
λ x4 .
cn0
)
)
)
(
λ x1 x2 .
cz
)
(
λ x1 x2 .
cif
(
wceq
(
cv
x1
)
c0
)
c0
(
co
(
co
(
cv
x1
)
(
cop
(
co
(
cv
x2
)
(
cfv
(
cv
x1
)
chash
)
cmo
)
(
cfv
(
cv
x1
)
chash
)
)
csubstr
)
(
co
(
cv
x1
)
(
cop
cc0
(
co
(
cv
x2
)
(
cfv
(
cv
x1
)
chash
)
cmo
)
)
csubstr
)
cconcat
)
)
)
⟶
(
∀ x1 x2 :
ι → ο
.
wceq
(
cs2
x1
x2
)
(
co
(
cs1
x1
)
(
cs1
x2
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 :
ι → ο
.
wceq
(
cs3
x1
x2
x3
)
(
co
(
cs2
x1
x2
)
(
cs1
x3
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 x4 :
ι → ο
.
wceq
(
cs4
x1
x2
x3
x4
)
(
co
(
cs3
x1
x2
x3
)
(
cs1
x4
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 x4 x5 :
ι → ο
.
wceq
(
cs5
x1
x2
x3
x4
x5
)
(
co
(
cs4
x1
x2
x3
x4
)
(
cs1
x5
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 x4 x5 x6 :
ι → ο
.
wceq
(
cs6
x1
x2
x3
x4
x5
x6
)
(
co
(
cs5
x1
x2
x3
x4
x5
)
(
cs1
x6
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 x4 x5 x6 x7 :
ι → ο
.
wceq
(
cs7
x1
x2
x3
x4
x5
x6
x7
)
(
co
(
cs6
x1
x2
x3
x4
x5
x6
)
(
cs1
x7
)
cconcat
)
)
⟶
(
∀ x1 x2 x3 x4 x5 x6 x7 x8 :
ι → ο
.
wceq
(
cs8
x1
x2
x3
x4
x5
x6
x7
x8
)
(
co
(
cs7
x1
x2
x3
x4
x5
x6
x7
)
(
cs1
x8
)
cconcat
)
)
⟶
wceq
ctcl
(
cmpt
(
λ x1 .
cvv
)
(
λ x1 .
cint
(
cab
(
λ x2 .
wa
(
wss
(
cv
x1
)
(
cv
x2
)
)
(
wss
(
ccom
(
cv
x2
)
(
cv
x2
)
)
(
cv
x2
)
)
)
)
)
)
⟶
x0
)
⟶
x0
Theorem
df_hash
:
wceq
chash
(
cun
(
ccom
(
cres
(
crdg
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
co
(
cv
x0
)
c1
caddc
)
)
cc0
)
com
)
ccrd
)
(
cxp
(
cdif
cvv
cfn
)
(
csn
cpnf
)
)
)
(proof)
Theorem
df_word
:
∀ x0 :
ι → ο
.
wceq
(
cword
x0
)
(
cab
(
λ x1 .
wrex
(
λ x2 .
wf
(
co
cc0
(
cv
x2
)
cfzo
)
x0
(
cv
x1
)
)
(
λ x2 .
cn0
)
)
)
(proof)
Theorem
df_lsw
:
wceq
clsw
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cfv
(
co
(
cfv
(
cv
x0
)
chash
)
c1
cmin
)
(
cv
x0
)
)
)
(proof)
Theorem
df_concat
:
wceq
cconcat
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
cc0
(
co
(
cfv
(
cv
x0
)
chash
)
(
cfv
(
cv
x1
)
chash
)
caddc
)
cfzo
)
(
λ x2 .
cif
(
wcel
(
cv
x2
)
(
co
cc0
(
cfv
(
cv
x0
)
chash
)
cfzo
)
)
(
cfv
(
cv
x2
)
(
cv
x0
)
)
(
cfv
(
co
(
cv
x2
)
(
cfv
(
cv
x0
)
chash
)
cmin
)
(
cv
x1
)
)
)
)
)
(proof)
Theorem
df_s1
:
∀ x0 :
ι → ο
.
wceq
(
cs1
x0
)
(
csn
(
cop
cc0
(
cfv
x0
cid
)
)
)
(proof)
Theorem
df_substr
:
wceq
csubstr
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cxp
cz
cz
)
(
λ x0 x1 .
cif
(
wss
(
co
(
cfv
(
cv
x1
)
c1st
)
(
cfv
(
cv
x1
)
c2nd
)
cfzo
)
(
cdm
(
cv
x0
)
)
)
(
cmpt
(
λ x2 .
co
cc0
(
co
(
cfv
(
cv
x1
)
c2nd
)
(
cfv
(
cv
x1
)
c1st
)
cmin
)
cfzo
)
(
λ x2 .
cfv
(
co
(
cv
x2
)
(
cfv
(
cv
x1
)
c1st
)
caddc
)
(
cv
x0
)
)
)
c0
)
)
(proof)
Theorem
df_splice
:
wceq
csplice
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
co
(
co
(
co
(
cv
x0
)
(
cop
cc0
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c1st
)
)
csubstr
)
(
cfv
(
cv
x1
)
c2nd
)
cconcat
)
(
co
(
cv
x0
)
(
cop
(
cfv
(
cfv
(
cv
x1
)
c1st
)
c2nd
)
(
cfv
(
cv
x0
)
chash
)
)
csubstr
)
cconcat
)
)
(proof)
Theorem
df_reverse
:
wceq
creverse
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cmpt
(
λ x1 .
co
cc0
(
cfv
(
cv
x0
)
chash
)
cfzo
)
(
λ x1 .
cfv
(
co
(
co
(
cfv
(
cv
x0
)
chash
)
c1
cmin
)
(
cv
x1
)
cmin
)
(
cv
x0
)
)
)
)
(proof)
Theorem
df_reps
:
wceq
creps
(
cmpt2
(
λ x0 x1 .
cvv
)
(
λ x0 x1 .
cn0
)
(
λ x0 x1 .
cmpt
(
λ x2 .
co
cc0
(
cv
x1
)
cfzo
)
(
λ x2 .
cv
x0
)
)
)
(proof)
Theorem
df_csh
:
wceq
ccsh
(
cmpt2
(
λ x0 x1 .
cab
(
λ x2 .
wrex
(
λ x3 .
wfn
(
cv
x2
)
(
co
cc0
(
cv
x3
)
cfzo
)
)
(
λ x3 .
cn0
)
)
)
(
λ x0 x1 .
cz
)
(
λ x0 x1 .
cif
(
wceq
(
cv
x0
)
c0
)
c0
(
co
(
co
(
cv
x0
)
(
cop
(
co
(
cv
x1
)
(
cfv
(
cv
x0
)
chash
)
cmo
)
(
cfv
(
cv
x0
)
chash
)
)
csubstr
)
(
co
(
cv
x0
)
(
cop
cc0
(
co
(
cv
x1
)
(
cfv
(
cv
x0
)
chash
)
cmo
)
)
csubstr
)
cconcat
)
)
)
(proof)
Theorem
df_s2
:
∀ x0 x1 :
ι → ο
.
wceq
(
cs2
x0
x1
)
(
co
(
cs1
x0
)
(
cs1
x1
)
cconcat
)
(proof)
Theorem
df_s3
:
∀ x0 x1 x2 :
ι → ο
.
wceq
(
cs3
x0
x1
x2
)
(
co
(
cs2
x0
x1
)
(
cs1
x2
)
cconcat
)
(proof)
Theorem
df_s4
:
∀ x0 x1 x2 x3 :
ι → ο
.
wceq
(
cs4
x0
x1
x2
x3
)
(
co
(
cs3
x0
x1
x2
)
(
cs1
x3
)
cconcat
)
(proof)
Theorem
df_s5
:
∀ x0 x1 x2 x3 x4 :
ι → ο
.
wceq
(
cs5
x0
x1
x2
x3
x4
)
(
co
(
cs4
x0
x1
x2
x3
)
(
cs1
x4
)
cconcat
)
(proof)
Theorem
df_s6
:
∀ x0 x1 x2 x3 x4 x5 :
ι → ο
.
wceq
(
cs6
x0
x1
x2
x3
x4
x5
)
(
co
(
cs5
x0
x1
x2
x3
x4
)
(
cs1
x5
)
cconcat
)
(proof)
Theorem
df_s7
:
∀ x0 x1 x2 x3 x4 x5 x6 :
ι → ο
.
wceq
(
cs7
x0
x1
x2
x3
x4
x5
x6
)
(
co
(
cs6
x0
x1
x2
x3
x4
x5
)
(
cs1
x6
)
cconcat
)
(proof)
Theorem
df_s8
:
∀ x0 x1 x2 x3 x4 x5 x6 x7 :
ι → ο
.
wceq
(
cs8
x0
x1
x2
x3
x4
x5
x6
x7
)
(
co
(
cs7
x0
x1
x2
x3
x4
x5
x6
)
(
cs1
x7
)
cconcat
)
(proof)
Theorem
df_trcl
:
wceq
ctcl
(
cmpt
(
λ x0 .
cvv
)
(
λ x0 .
cint
(
cab
(
λ x1 .
wa
(
wss
(
cv
x0
)
(
cv
x1
)
)
(
wss
(
ccom
(
cv
x1
)
(
cv
x1
)
)
(
cv
x1
)
)
)
)
)
)
(proof)