Search for blocks/addresses/...

Proofgold Proposition

∀ x0 : ο . (wceq cdioph (cmpt (λ x1 . cn0) (λ x1 . crn (cmpt2 (λ x2 x3 . cfv (cv x1) cuz) (λ x2 x3 . cfv (co c1 (cv x2) cfz) cmzp) (λ x2 x3 . cab (λ x4 . wrex (λ x5 . wa (wceq (cv x4) (cres (cv x5) (co c1 (cv x1) cfz))) (wceq (cfv (cv x5) (cv x3)) cc0)) (λ x5 . co cn0 (co c1 (cv x2) cfz) cmap))))))wceq csquarenn (crab (λ x1 . wcel (cfv (cv x1) csqrt) cq) (λ x1 . cn))wceq cpell1qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cn0)) (λ x3 . cn0)) (λ x2 . cr)))wceq cpell14qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cz)) (λ x3 . cn0)) (λ x2 . cr)))wceq cpell1234qr (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . crab (λ x2 . wrex (λ x3 . wrex (λ x4 . wa (wceq (cv x2) (co (cv x3) (co (cfv (cv x1) csqrt) (cv x4) cmul) caddc)) (wceq (co (co (cv x3) c2 cexp) (co (cv x1) (co (cv x4) c2 cexp) cmul) cmin) c1)) (λ x4 . cz)) (λ x3 . cz)) (λ x2 . cr)))wceq cpellfund (cmpt (λ x1 . cdif cn csquarenn) (λ x1 . cinf (crab (λ x2 . wbr c1 (cv x2) clt) (λ x2 . cfv (cv x1) cpell14qr)) cr clt))wceq crmx (cmpt2 (λ x1 x2 . cfv c2 cuz) (λ x1 x2 . cz) (λ x1 x2 . cfv (cfv (co (co (cv x1) (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) caddc) (cv x2) cexp) (ccnv (cmpt (λ x3 . cxp cn0 cz) (λ x3 . co (cfv (cv x3) c1st) (co (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) (cfv (cv x3) c2nd) cmul) caddc)))) c1st))wceq crmy (cmpt2 (λ x1 x2 . cfv c2 cuz) (λ x1 x2 . cz) (λ x1 x2 . cfv (cfv (co (co (cv x1) (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) caddc) (cv x2) cexp) (ccnv (cmpt (λ x3 . cxp cn0 cz) (λ x3 . co (cfv (cv x3) c1st) (co (cfv (co (co (cv x1) c2 cexp) c1 cmin) csqrt) (cfv (cv x3) c2nd) cmul) caddc)))) c2nd))wceq clfig (crab (λ x1 . wcel (cfv (cv x1) cbs) (cima (cfv (cv x1) clspn) (cin (cpw (cfv (cv x1) cbs)) cfn))) (λ x1 . clmod))wceq clnm (crab (λ x1 . wral (λ x2 . wcel (co (cv x1) (cv x2) cress) clfig) (λ x2 . cfv (cv x1) clss)) (λ x1 . clmod))wceq clnr (crab (λ x1 . wcel (cfv (cv x1) crglmod) clnm) (λ x1 . crg))wceq cldgis (cmpt (λ x1 . cvv) (λ x1 . cmpt (λ x2 . cfv (cfv (cv x1) cpl1) clidl) (λ x2 . cmpt (λ x3 . cn0) (λ x3 . cab (λ x4 . wrex (λ x5 . wa (wbr (cfv (cv x5) (cfv (cv x1) cdg1)) (cv x3) cle) (wceq (cv x4) (cfv (cv x3) (cfv (cv x5) cco1)))) (λ x5 . cv x2))))))wceq cmnc (cmpt (λ x1 . cpw cc) (λ x1 . crab (λ x2 . wceq (cfv (cfv (cv x2) cdgr) (cfv (cv x2) ccoe)) c1) (λ x2 . cfv (cv x1) cply)))wceq cplylt (cmpt2 (λ x1 x2 . cpw cc) (λ x1 x2 . cn0) (λ x1 x2 . crab (λ x3 . wo (wceq (cv x3) c0p) (wbr (cfv (cv x3) cdgr) (cv x2) clt)) (λ x3 . cfv (cv x1) cply)))wceq cdgraa (cmpt (λ x1 . caa) (λ x1 . cinf (crab (λ x2 . wrex (λ x3 . wa (wceq (cfv (cv x3) cdgr) (cv x2)) (wceq (cfv (cv x1) (cv x3)) cc0)) (λ x3 . cdif (cfv cq cply) (csn c0p))) (λ x2 . cn)) cr clt))wceq cmpaa (cmpt (λ x1 . caa) (λ x1 . crio (λ x2 . w3a (wceq (cfv (cv x2) cdgr) (cfv (cv x1) cdgraa)) (wceq (cfv (cv x1) (cv x2)) cc0) (wceq (cfv (cfv (cv x1) cdgraa) (cfv (cv x2) ccoe)) c1)) (λ x2 . cfv cq cply)))wceq citgo (cmpt (λ x1 . cpw cc) (λ x1 . crab (λ x2 . wrex (λ x3 . wa (wceq (cfv (cv x2) (cv x3)) cc0) (wceq (cfv (cfv (cv x3) cdgr) (cfv (cv x3) ccoe)) c1)) (λ x3 . cfv (cv x1) cply)) (λ x2 . cc)))wceq cza (cfv cz citgo)x0)x0
type
prop
theory
SetMM
name
df_dioph__df_squarenn__df_pell1qr__df_pell14qr__df_pell1234qr__df_pellfund__df_rmx__df_rmy__df_lfig__df_lnm__df_lnr__df_ldgis__df_mnc__df_plylt__df_dgraa__df_mpaa__df_itgo__df_za
proof
PUV1k..
Megalodon
-
proofgold address
TMUHZ..
creator
36224 PrCmT../0e1fe..
owner
36224 PrCmT../0e1fe..
term root
17b47..