Search for blocks/addresses/...

Proofgold Signed Transaction

vin
Pr3v3../29d75..
PUbuj../19daa..
vout
Pr3v3../79382.. 80.42 bars
TML7B../2545f.. ownership of 1299d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMYje../45d54.. ownership of 6c92d.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMFuv../4ab15.. ownership of 71675.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMH7b../527f8.. ownership of 53ea8.. as prop with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMSa4../758ac.. ownership of 15e29.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
TMZeg../93179.. ownership of fa6fc.. as obj with payaddr PrCx1.. rights free controlledby PrCx1.. upto 0
PUMMW../c1479.. doc published by PrCx1..
Param lam_idlam_id : ιι
Param apap : ιιι
Definition struct_idstruct_id := λ x0 . lam_id (ap x0 0)
Param lam_complam_comp : ιιιι
Definition struct_compstruct_comp := λ x0 x1 x2 . lam_comp (ap x0 0)
Definition andand := λ x0 x1 : ο . ∀ x2 : ο . (x0x1x2)x2
Param struct_rstruct_r : ιο
Param unpack_r_ounpack_r_o : ι(ι(ιιο) → ο) → ο
Param notnot : οο
Definition IrreflexiveSymmetricRelnstruct_r_graph := λ x0 . and (struct_r x0) (unpack_r_o x0 (λ x1 . λ x2 : ι → ι → ο . and (∀ x3 . x3x1not (x2 x3 x3)) (∀ x3 . x3x1∀ x4 . x4x1x2 x3 x4x2 x4 x3)))
Param MetaCatMetaCat : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ο
Param BinRelnHomHom_struct_r : ιιιο
Known 62658..MetaCat_struct_r_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaCat x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0))
Theorem 71675..MetaCat_struct_r_graph : MetaCat IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp (proof)
Param MetaFunctorMetaFunctor : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → ο
Param TrueTrue : ο
Param HomSetSetHom : ιιιο
Known 45945..MetaCat_struct_r_Forgetful_gen : ∀ x0 : ι → ο . (∀ x1 . x0 x1struct_r x1)MetaFunctor x0 BinRelnHom (λ x1 . lam_id (ap x1 0)) (λ x1 x2 x3 . lam_comp (ap x1 0)) (λ x1 . True) HomSet lam_id (λ x1 x2 x3 . lam_comp x1) (λ x1 . ap x1 0) (λ x1 x2 x3 . x3)
Theorem 1299d..MetaCat_struct_r_graph_Forgetful : MetaFunctor IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp (λ x0 . True) HomSet lam_id (λ x0 x1 x2 . lam_comp x0) (λ x0 . ap x0 0) (λ x0 x1 x2 . x2) (proof)
Param MetaCat_initial_pinitial_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture fc401..MetaCat_struct_r_graph_initial : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_initial_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0
Param MetaCat_terminal_pterminal_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ο
Conjecture 89169..MetaCat_struct_r_graph_terminal : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . MetaCat_terminal_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3x2)x2)x0)x0
Param MetaCat_coproduct_constr_pcoproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture ad517..MetaCat_struct_r_graph_coproduct_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_coproduct_constr_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_product_constr_pproduct_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → ο
Conjecture 709ef..MetaCat_struct_r_graph_product_constr : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . MetaCat_product_constr_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_coequalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture ba762.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_coequalizer_buggy_struct_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0
Param MetaCat_equalizer_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιι) → (ιιιιι) → (ιιιιιιι) → ο
Conjecture c3b35.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι → ι . MetaCat_equalizer_buggy_struct_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5x4)x4)x2)x2)x0)x0
Param MetaCat_pushout_buggy_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture 4d919.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pushout_buggy_constr_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_pullback_buggy_struct_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιι) → (ιιιιιιιιι) → ο
Conjecture e1840.. : ∀ x0 : ο . (∀ x1 : ι → ι → ι → ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι → ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι → ι → ι → ι . MetaCat_pullback_buggy_struct_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_exp_constr_pproduct_exponent_constr_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιι) → (ιιιιιι) → (ιιι) → (ιιι) → (ιιιιι) → ο
Conjecture 90b91..MetaCat_struct_r_graph_product_exponent : ∀ x0 : ο . (∀ x1 : ι → ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι → ι → ι → ι → ι . (∀ x8 : ο . (∀ x9 : ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι . (∀ x12 : ο . (∀ x13 : ι → ι → ι → ι → ι . MetaCat_exp_constr_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11 x13x12)x12)x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_subobject_classifier_buggy_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιι(ιιιι) → (ιιιιιιι) → ο
Conjecture 53db7.. : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 : ι → ι → ι → ι . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι → ι → ι → ι . MetaCat_subobject_classifier_buggy_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaCat_nno_pnno_p : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → ι(ιι) → ιιι(ιιιι) → ο
Conjecture 31886..MetaCat_struct_r_graph_nno : ∀ x0 : ο . (∀ x1 . (∀ x2 : ο . (∀ x3 : ι → ι . (∀ x4 : ο . (∀ x5 . (∀ x6 : ο . (∀ x7 . (∀ x8 : ο . (∀ x9 . (∀ x10 : ο . (∀ x11 : ι → ι → ι → ι . MetaCat_nno_p IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 x5 x7 x9 x11x10)x10)x8)x8)x6)x6)x4)x4)x2)x2)x0)x0
Param MetaAdjunction_strictMetaAdjunction_strict : (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιο) → (ιιιο) → (ιι) → (ιιιιιι) → (ιι) → (ιιιι) → (ιι) → (ιιιι) → (ιι) → (ιι) → ο
Conjecture 1e88d..MetaCat_struct_r_graph_left_adjoint_forgetful : ∀ x0 : ο . (∀ x1 : ι → ι . (∀ x2 : ο . (∀ x3 : ι → ι → ι → ι . (∀ x4 : ο . (∀ x5 : ι → ι . (∀ x6 : ο . (∀ x7 : ι → ι . MetaAdjunction_strict (λ x8 . True) HomSet lam_id (λ x8 x9 x10 . lam_comp x8) IrreflexiveSymmetricReln BinRelnHom struct_id struct_comp x1 x3 (λ x8 . ap x8 0) (λ x8 x9 x10 . x10) x5 x7x6)x6)x4)x4)x2)x2)x0)x0