Search for blocks/addresses/...

Proofgold Signed Transaction

vin
PrCit../127bb..
PUUpD../0b073..
vout
PrCit../29add.. 4.60 bars
TMRSY../30b78.. ownership of cdccb.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMFVC../2b4b3.. ownership of 07efc.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMcRg../22e60.. ownership of c5df5.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLtY../58203.. ownership of 34d04.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKNF../2161e.. ownership of 40ee6.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRFB../b19e7.. ownership of 9749c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbj9../1fa41.. ownership of 93c4c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMdqu../510f1.. ownership of b3294.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMVSs../390e7.. ownership of 42c1c.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMRXi../de6cc.. ownership of 3cfa0.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMNiH../b2406.. ownership of 9ac02.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMWSf../6a613.. ownership of 12a39.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMLce../00be8.. ownership of bc9c2.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMbuJ../96d07.. ownership of e4e4b.. as prop with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMKbf../76d29.. ownership of 247c9.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMEjN../3c69a.. ownership of ad0ca.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMY3Z../72cc5.. ownership of 13806.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
TMPFa../dbfeb.. ownership of 49ee0.. as obj with payaddr Pr4zB.. rights free controlledby Pr4zB.. upto 0
PUfSu../e15a4.. doc published by Pr4zB..
Definition permargs_i_2_3_0_1_4_5 := λ x0 : ι → ι → ι → ι → ι → ι → ι . λ x1 x2 x3 x4 . x0 x3 x4 x1 x2
Param ordsuccordsucc : ιι
Definition u1 := 1
Definition u2 := ordsucc u1
Definition u3 := ordsucc u2
Definition u4 := ordsucc u3
Definition u5 := ordsucc u4
Definition Church6_to_u6 := λ x0 : ι → ι → ι → ι → ι → ι → ι . x0 0 u1 u2 u3 u4 u5
Param nth_6_tuple : ιιιιιιιι
Definition 247c9.. := λ x0 . Church6_to_u6 (permargs_i_2_3_0_1_4_5 (nth_6_tuple x0))
Definition Church6_lt4p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2)x1 (λ x2 x3 x4 x5 x6 x7 . x3)x1 (λ x2 x3 x4 x5 x6 x7 . x4)x1 (λ x2 x3 x4 x5 x6 x7 . x5)x1 x0
Theorem 39a8c.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x0) (proof)
Theorem bc219.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x1) (proof)
Theorem a050d.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x2) (proof)
Theorem 22a13.. : Church6_lt4p (λ x0 x1 x2 x3 x4 x5 . x3) (proof)
Definition Church6_p := λ x0 : ι → ι → ι → ι → ι → ι → ι . ∀ x1 : (ι → ι → ι → ι → ι → ι → ι) → ο . x1 (λ x2 x3 x4 x5 x6 x7 . x2)x1 (λ x2 x3 x4 x5 x6 x7 . x3)x1 (λ x2 x3 x4 x5 x6 x7 . x4)x1 (λ x2 x3 x4 x5 x6 x7 . x5)x1 (λ x2 x3 x4 x5 x6 x7 . x6)x1 (λ x2 x3 x4 x5 x6 x7 . x7)x1 x0
Known 2d0c6.. : Church6_p (λ x0 x1 x2 x3 x4 x5 . x0)
Known bebec.. : Church6_p (λ x0 x1 x2 x3 x4 x5 . x1)
Known 8c295.. : Church6_p (λ x0 x1 x2 x3 x4 x5 . x2)
Known 3b22d.. : Church6_p (λ x0 x1 x2 x3 x4 x5 . x3)
Theorem 95148.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_p x0 (proof)
Known cases_4cases_4 : ∀ x0 . x04∀ x1 : ι → ο . x1 0x1 1x1 2x1 3x1 x0
Known a1243.. : nth_6_tuple 0 = λ x1 x2 x3 x4 x5 x6 . x1
Known a7cad.. : nth_6_tuple u1 = λ x1 x2 x3 x4 x5 x6 . x2
Known a0d60.. : nth_6_tuple u2 = λ x1 x2 x3 x4 x5 x6 . x3
Known 89684.. : nth_6_tuple u3 = λ x1 x2 x3 x4 x5 x6 . x4
Theorem c3ac2.. : ∀ x0 . x0u4Church6_lt4p (nth_6_tuple x0) (proof)
Known In_0_4In_0_4 : 04
Known In_1_4In_1_4 : 14
Known In_2_4In_2_4 : 24
Known In_3_4In_3_4 : 34
Theorem 6629a.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_to_u6 x0u4 (proof)
Theorem bc9c2.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_lt4p x0Church6_lt4p (permargs_i_2_3_0_1_4_5 x0) (proof)
Known 3ac64.. : ∀ x0 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0nth_6_tuple (Church6_to_u6 x0) = x0
Theorem 9ac02.. : ∀ x0 . x0u4permargs_i_2_3_0_1_4_5 (nth_6_tuple x0) = nth_6_tuple (247c9.. x0) (proof)
Theorem 42c1c.. : ∀ x0 . x0u4247c9.. x0u4 (proof)
Definition TwoRamseyGraph_4_6_Church6_squared_b := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x5)) (x2 (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x5)) (x2 (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x5)) (x2 (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x5))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x5)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x5))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x4 x4 x4 x4 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x4 x4 x4 x4 x5))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x5 x4 x5 x5)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x5 x4 x5 x5 x5)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x5 x5 x5 x5)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x5)))
Definition FalseFalse := ∀ x0 : ο . x0
Known FalseEFalseE : False∀ x0 : ο . x0
Known 768c1.. : ((λ x1 x2 . x2) = λ x1 x2 . x1)∀ x0 : ο . x0
Theorem 93c4c.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0Church6_lt4p x1Church6_p x2Church6_lt4p x3(TwoRamseyGraph_4_6_Church6_squared_b x0 (permargs_i_2_3_0_1_4_5 x1) x2 (permargs_i_2_3_0_1_4_5 x3) = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_b x0 x1 x2 x3 = λ x5 x6 . x5 (proof)
Definition u6 := ordsucc u5
Definition notnot := λ x0 : ο . x0False
Definition TwoRamseyGraph_4_6_35_b := λ x0 x1 x2 x3 . x0u6x1u6x2u6x3u6TwoRamseyGraph_4_6_Church6_squared_b (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5
Known 3b8c0.. : ∀ x0 . x0u6Church6_p (nth_6_tuple x0)
Definition SubqSubq := λ x0 x1 . ∀ x2 . x2x0x2x1
Known ordsuccI1ordsuccI1 : ∀ x0 . x0ordsucc x0
Theorem 40ee6.. : ∀ x0 . x0u6∀ x1 . x1u4∀ x2 . x2u6∀ x3 . x3u4not (TwoRamseyGraph_4_6_35_b x0 x1 x2 x3)not (TwoRamseyGraph_4_6_35_b x0 (247c9.. x1) x2 (247c9.. x3)) (proof)
Definition TwoRamseyGraph_4_6_Church6_squared_a := λ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . λ x4 x5 . x0 (x1 (x2 (x3 x4 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x4 x5 x4 x4 x5 x4)) (x2 (x3 x5 x4 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x4 x4 x4 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x5 x4)) (x2 (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4))) (x1 (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x5 x4 x5) (x3 x4 x4 x5 x4 x5 x4) (x3 x4 x5 x5 x4 x5 x4) (x3 x5 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4)) (x2 (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x4) (x3 x5 x4 x5 x4 x4 x4)) (x2 (x3 x5 x4 x5 x4 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x5) (x3 x4 x5 x4 x5 x4 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x4)) (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x5) (x3 x5 x5 x5 x4 x4 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x5) (x3 x4 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x5 x5) (x3 x5 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x4 x5 x4 x4) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x5 x5 x5 x5 x4)) (x2 (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x5 x5 x5 x5 x5 x4))) (x1 (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x5 x4 x4 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x5 x4 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x5 x5 x4 x4 x5) (x3 x4 x4 x5 x5 x4 x4)) (x2 (x3 x4 x5 x5 x4 x5 x4) (x3 x4 x4 x5 x4 x5 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x4) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x5 x4 x4 x5 x4 x5) (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x4 x5 x5 x4 x5) (x3 x5 x5 x4 x4 x4 x4)) (x2 (x3 x4 x5 x5 x4 x4 x4) (x3 x4 x5 x5 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x5 x5 x4 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x5 x4 x4 x5 x4 x4) (x3 x5 x4 x4 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x5 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x5 x4 x5 x4))) (x1 (x2 (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x4 x5 x4) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x5 x5 x4 x4 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x5 x4 x4 x4 x4 x5) (x3 x4 x4 x5 x5 x5 x4)) (x2 (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x4 x4 x4 x5 x5 x4) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x4 x4 x5 x5 x5 x4) (x3 x5 x4 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x4 x4 x5 x4 x4 x5) (x3 x5 x5 x4 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x4) (x3 x5 x5 x5 x5 x5 x5) (x3 x5 x4 x5 x4 x5 x5) (x3 x5 x4 x5 x4 x4 x5) (x3 x4 x4 x4 x4 x4 x4)) (x2 (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x4 x5) (x3 x5 x5 x5 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x5) (x3 x4 x5 x4 x5 x5 x4) (x3 x4 x4 x4 x4 x4 x4))) (x1 (x2 (x3 x4 x5 x4 x4 x5 x5) (x3 x5 x4 x5 x5 x5 x4) (x3 x5 x5 x4 x5 x5 x5) (x3 x4 x4 x5 x5 x5 x4) (x3 x4 x4 x5 x5 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x4 x4 x4 x5 x5) (x3 x4 x5 x5 x5 x4 x5) (x3 x5 x5 x5 x4 x5 x5) (x3 x4 x4 x5 x5 x4 x5) (x3 x4 x4 x5 x5 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x4 x5 x5 x5) (x3 x5 x5 x5 x4 x5 x4) (x3 x4 x5 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x4 x5) (x3 x5 x5 x4 x4 x4 x4) (x3 x5 x4 x4 x5 x5 x4)) (x2 (x3 x4 x4 x5 x4 x5 x5) (x3 x5 x5 x4 x5 x4 x5) (x3 x5 x4 x5 x5 x5 x5) (x3 x5 x5 x4 x4 x5 x4) (x3 x5 x5 x4 x4 x4 x4) (x3 x4 x5 x5 x4 x5 x4)) (x2 (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4) (x3 x4 x4 x4 x4 x5 x5) (x3 x4 x4 x4 x4 x5 x5) (x3 x5 x5 x5 x5 x4 x4) (x3 x5 x5 x5 x5 x4 x4)) (x2 (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4) (x3 x4 x4 x4 x4 x4 x4)))
Theorem c5df5.. : ∀ x0 x1 x2 x3 : ι → ι → ι → ι → ι → ι → ι . Church6_p x0Church6_lt4p x1Church6_p x2Church6_lt4p x3(TwoRamseyGraph_4_6_Church6_squared_a x0 x1 x2 x3 = λ x5 x6 . x5)TwoRamseyGraph_4_6_Church6_squared_a x0 (permargs_i_2_3_0_1_4_5 x1) x2 (permargs_i_2_3_0_1_4_5 x3) = λ x5 x6 . x5 (proof)
Definition TwoRamseyGraph_4_6_35_a := λ x0 x1 x2 x3 . TwoRamseyGraph_4_6_Church6_squared_a (nth_6_tuple x0) (nth_6_tuple x1) (nth_6_tuple x2) (nth_6_tuple x3) = λ x5 x6 . x5
Theorem cdccb.. : ∀ x0 . x0u6∀ x1 . x1u4∀ x2 . x2u6∀ x3 . x3u4TwoRamseyGraph_4_6_35_a x0 x1 x2 x3TwoRamseyGraph_4_6_35_a x0 (247c9.. x1) x2 (247c9.. x3) (proof)