Search for blocks/addresses/...
Proofgold Term Root Disambiguation
∀ x0 x1 .
SNoLt
0
x0
⟶
SNoLt
0
x1
⟶
not
(
mul_SNo
x0
x1
∈
real
)
⟶
SNo
x0
⟶
x0
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x0
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x0
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x0
)
⟶
SNo
x1
⟶
SNoLev
x1
∈
ordsucc
omega
⟶
x1
∈
SNoS_
(
ordsucc
omega
)
⟶
SNoLt
x1
omega
⟶
(
∀ x2 .
x2
∈
SNoS_
omega
⟶
(
∀ x3 .
x3
∈
omega
⟶
SNoLt
(
abs_SNo
(
add_SNo
x2
(
minus_SNo
x1
)
)
)
(
eps_
x3
)
)
⟶
x2
=
x1
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x0
⟶
SNoLt
x0
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
(
∀ x2 .
x2
∈
omega
⟶
∀ x3 : ο .
(
∀ x4 .
x4
∈
SNoS_
omega
⟶
SNoLt
0
x4
⟶
SNoLt
x4
x1
⟶
SNoLt
x1
(
add_SNo
x4
(
eps_
x2
)
)
⟶
x3
)
⟶
x3
)
⟶
SNo
(
mul_SNo
x0
x1
)
⟶
SNo
(
minus_SNo
(
mul_SNo
x0
x1
)
)
⟶
nIn
(
SNoLev
(
mul_SNo
x0
x1
)
)
omega
⟶
not
(
∀ x2 .
SNo
x2
⟶
SNoLev
x2
∈
omega
⟶
SNoLev
x2
∈
SNoLev
(
mul_SNo
x0
x1
)
)
as obj
-
as prop
9e3c5..
Conj_real_mul_SNo_pos__132__4
theory
HotG
stx
b740c..
address
TMHGk..
Conj_real_mul_SNo_pos__132__4